Photo AI

5.1 Vereenvoudig (SONDER DIE GEBRUIK VAN 'n SAKREKENAAR) $$ ext{sin}(180^ ext{o} - x) imes ext{cos}(x - 360^ ext{o}) imes ext{tan}(180^ ext{o} + x) imes ext{cos}(-x) imes ext{tan}(-x) imes ext{cos}(90^ ext{o} - x) imes ext{sin}(90^ ext{o} - x)$$ 5.2 Bewys die identiteit: $$ rac{ ext{sin} x}{1 + ext{cos} x} + rac{1 + ext{cos} x}{ ext{sin} x} = rac{2}{ ext{sin} x}$$ 5.3 Gebruik saamgestelde hoeke om aan te toon dat: $$ ext{cos} 2x = 2 ext{cos}^2 x - 1$$ 5.4 Bepaal die algemene oplossing vir $x$, as: $$ ext{cos} 2x + 3 = 2$$ 5.5 In $ riangle ABC$: $ ext{A} + ext{B} = 90^ ext{o}$ - NSC Mathematics - Question 5 - 2016 - Paper 2

Question icon

Question 5

5.1-Vereenvoudig-(SONDER-DIE-GEBRUIK-VAN-'n-SAKREKENAAR)--$$-ext{sin}(180^-ext{o}---x)--imes--ext{cos}(x---360^-ext{o})--imes--ext{tan}(180^-ext{o}-+-x)--imes--ext{cos}(-x)--imes--ext{tan}(-x)--imes--ext{cos}(90^-ext{o}---x)--imes--ext{sin}(90^-ext{o}---x)$$--5.2-Bewys-die-identiteit:--$$-rac{-ext{sin}-x}{1-+--ext{cos}-x}-+--rac{1-+--ext{cos}-x}{-ext{sin}-x}-=--rac{2}{-ext{sin}-x}$$--5.3-Gebruik-saamgestelde-hoeke-om-aan-te-toon-dat:--$$-ext{cos}-2x-=-2--ext{cos}^2-x---1$$--5.4-Bepaal-die-algemene-oplossing-vir-$x$,-as:--$$-ext{cos}-2x-+-3-=-2$$--5.5-In-$-riangle-ABC$:-$-ext{A}-+--ext{B}-=-90^-ext{o}$-NSC Mathematics-Question 5-2016-Paper 2.png

5.1 Vereenvoudig (SONDER DIE GEBRUIK VAN 'n SAKREKENAAR) $$ ext{sin}(180^ ext{o} - x) imes ext{cos}(x - 360^ ext{o}) imes ext{tan}(180^ ext{o} + x) imes ext{c... show full transcript

Worked Solution & Example Answer:5.1 Vereenvoudig (SONDER DIE GEBRUIK VAN 'n SAKREKENAAR) $$ ext{sin}(180^ ext{o} - x) imes ext{cos}(x - 360^ ext{o}) imes ext{tan}(180^ ext{o} + x) imes ext{cos}(-x) imes ext{tan}(-x) imes ext{cos}(90^ ext{o} - x) imes ext{sin}(90^ ext{o} - x)$$ 5.2 Bewys die identiteit: $$ rac{ ext{sin} x}{1 + ext{cos} x} + rac{1 + ext{cos} x}{ ext{sin} x} = rac{2}{ ext{sin} x}$$ 5.3 Gebruik saamgestelde hoeke om aan te toon dat: $$ ext{cos} 2x = 2 ext{cos}^2 x - 1$$ 5.4 Bepaal die algemene oplossing vir $x$, as: $$ ext{cos} 2x + 3 = 2$$ 5.5 In $ riangle ABC$: $ ext{A} + ext{B} = 90^ ext{o}$ - NSC Mathematics - Question 5 - 2016 - Paper 2

Step 1

Vereenvoudig (SONDER DIE GEBRUIK VAN 'n SAKREKENAAR)

96%

114 rated

Answer

To simplify the expression, we first apply trigonometric identities:

  1. Rewrite the angles using known values:

    extsin(180extox)=extsinx ext{sin}(180^ ext{o} - x) = ext{sin} x

    extcos(x360exto)=extcosx ext{cos}(x - 360^ ext{o}) = ext{cos} x

    exttan(180exto+x)=exttanx ext{tan}(180^ ext{o} + x) = ext{tan} x

    extcos(x)=extcosx ext{cos}(-x) = ext{cos} x

    exttan(x)=exttanx ext{tan}(-x) = - ext{tan} x

    extcos(90extox)=extsinx ext{cos}(90^ ext{o} - x) = ext{sin} x

    extsin(90extox)=extcosx ext{sin}(90^ ext{o} - x) = ext{cos} x.

  2. Substitute these in the original expression:

    extsinximesextcosximesexttanximesextcosximes(exttanx)imesextsinximesextcosx ext{sin} x imes ext{cos} x imes ext{tan} x imes ext{cos} x imes (- ext{tan} x) imes ext{sin} x imes ext{cos} x.

  3. Simplify the expression:

    extsin2ximesextcos3ximes(exttan2x)=extcosx. ext{sin}^2 x imes ext{cos}^3 x imes (- ext{tan}^2 x) = - ext{cos} x.

Step 2

Bewys die identiteit:

99%

104 rated

Answer

To prove the identity, we start with the left-hand side:

  1. Write down the identity:

    rac{ ext{sin} x}{1 + ext{cos} x} + rac{1 + ext{cos} x}{ ext{sin} x}

  2. Find a common denominator, which is (1+extcosx)imesextsinx(1 + ext{cos} x) imes ext{sin} x:

    = rac{ ext{sin}^2 x + (1 + ext{cos} x)(1 + ext{cos} x)}{(1 + ext{cos} x) ext{sin} x}

  3. Expand:

    = rac{ ext{sin}^2 x + 1 + 2 ext{cos} x + ext{cos}^2 x}{(1 + ext{cos} x) ext{sin} x}

  4. Recognize that extsin2x+extcos2x=1 ext{sin}^2 x + ext{cos}^2 x = 1:

    = rac{2(1 + ext{cos} x)}{(1 + ext{cos} x) ext{sin} x} = rac{2}{ ext{sin} x}.

Step 3

Gebruik saamgestelde hoeke om aan te toon dat:

96%

101 rated

Answer

To prove that:

extcos2x=2extcos2x1 ext{cos} 2x = 2 ext{cos}^2 x - 1

  1. Recall the double angle formula for cosine:

    extcos2x=extcos2xextsin2x ext{cos} 2x = ext{cos}^2 x - ext{sin}^2 x

  2. Substitute extsin2x ext{sin}^2 x with 1extcos2x1 - ext{cos}^2 x:

    =extcos2x(1extcos2x)= ext{cos}^2 x - (1 - ext{cos}^2 x)

  3. Simplify:

    =2extcos2x1.= 2 ext{cos}^2 x - 1.

Step 4

Bepaal die algemene oplossing vir x, as:

98%

120 rated

Answer

To determine the general solution for:

extcos2x+3=2 ext{cos} 2x + 3 = 2

  1. Rearrange the equation:

    extcos2x=1 ext{cos} 2x = -1

  2. The cosine function equals -1 at:

    2x=180exto+kimes360exto,extwherekextisaninteger.2x = 180^ ext{o} + k imes 360^ ext{o}, ext{ where } k ext{ is an integer.}

  3. Therefore:

    x=90exto+kimes180exto.x = 90^ ext{o} + k imes 180^ ext{o}.

Step 5

In \triangle ABC: A + B = 90°. Bepaal die waarde van sin A . cos B:

97%

117 rated

Answer

In triangle ABC where A + B = 90°:

  1. We can use the identity:

    extsinAimesextcosB=extsin(A+B). ext{sin} A imes ext{cos} B = ext{sin}(A + B).

  2. Since A+B=90extoA + B = 90^ ext{o}, it follows that:

    extsin(A+B)=extsin90exto=1. ext{sin}(A + B) = ext{sin} 90^ ext{o} = 1.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;