Photo AI

In the diagram below, ΔPQR is drawn with PQ = 20 − 4x, RQ = x and ∠Q = 60° - NSC Mathematics - Question 7 - 2016 - Paper 2

Question icon

Question 7

In-the-diagram-below,-ΔPQR-is-drawn-with-PQ-=-20-−-4x,-RQ-=-x-and-∠Q-=-60°-NSC Mathematics-Question 7-2016-Paper 2.png

In the diagram below, ΔPQR is drawn with PQ = 20 − 4x, RQ = x and ∠Q = 60°. 7.1.1 Show that the area of ΔPQR = 5√3x − √3x². 7.1.2 Determine the value of x for whic... show full transcript

Worked Solution & Example Answer:In the diagram below, ΔPQR is drawn with PQ = 20 − 4x, RQ = x and ∠Q = 60° - NSC Mathematics - Question 7 - 2016 - Paper 2

Step 1

7.1.1 Show that the area of ΔPQR = 5√3x − √3x².

96%

114 rated

Answer

To find the area of triangle ΔPQR, we use the formula:

A=12PQRQsin(Q)A = \frac{1}{2} PQ \cdot RQ \cdot \sin(\angle Q)

Substituting the values:

A=12(204x)xsin(60°)A = \frac{1}{2} (20 - 4x) \cdot x \cdot \sin(60°) =12(204x)x32= \frac{1}{2} (20 - 4x) \cdot x \cdot \frac{\sqrt{3}}{2} =(204x)x34= \frac{(20 - 4x) \cdot x \cdot \sqrt{3}}{4} =5x33x2= 5x\sqrt{3} - \sqrt{3}x^{2}

Thus, the area of ΔPQR is confirmed as 53x3x25√3x − √3x².

Step 2

7.1.2 Determine the value of x for which the area of ΔPQR will be a maximum.

99%

104 rated

Answer

To find the maximum area, we differentiate the area function:

A=53x3x2A = 5\sqrt{3}x - \sqrt{3}x^2

Taking the derivative: dAdx=5323x\frac{dA}{dx} = 5\sqrt{3} - 2\sqrt{3}x

Setting the derivative to zero for maximization:

5323x=05\sqrt{3} - 2\sqrt{3}x = 0

Solving for xx: 23x=532\sqrt{3}x = 5\sqrt{3} x=52x = \frac{5}{2}

Thus, the value of xx for maximum area is 52\frac{5}{2}.

Step 3

7.1.3 Calculate the length of PR if the area of ΔPQR is a maximum.

96%

101 rated

Answer

We already found that x=52x = \frac{5}{2}. Now, using the length expression for PQ and RQ:

PQ=204(52)=2010=10PQ = 20 - 4\left(\frac{5}{2}\right) = 20 - 10 = 10 RQ=52RQ = \frac{5}{2}

Using the cosine rule to calculate PR:

PR2=PQ2+RQ22PQRQcos(60°)PR^2 = PQ^2 + RQ^2 - 2 \cdot PQ \cdot RQ \cdot \cos(60°) =102+(52)22105212= 10^2 + \left(\frac{5}{2}\right)^2 - 2 \cdot 10 \cdot \frac{5}{2} \cdot \frac{1}{2} =100+25425= 100 + \frac{25}{4} - 25 =10025+254= 100 - 25 + \frac{25}{4} =75+254=3004+254=3254= 75 + \frac{25}{4} = \frac{300}{4} + \frac{25}{4} = \frac{325}{4}

Therefore, PR=3254=3252PR = \sqrt{\frac{325}{4}} = \frac{\sqrt{325}}{2}.

Step 4

7.2 Determine the distance AD between the two anchors in terms of h.

98%

120 rated

Answer

From triangle ABC, we have:

sin(β)=hAB\sin(\beta) = \frac{h}{AB} Thus, AB=hsin(β)AB = \frac{h}{\sin(\beta)}

Using the cosine rule in triangle ABD: AD=ABsin(2β)sin(90β)AD = \frac{AB \cdot \sin(2\beta)}{\sin(90 - \beta)} Substituting: AD=hsin(β)2sin(β)cos(β)AD = \frac{h}{\sin(\beta)} \cdot 2\sin(\beta)\cos(\beta) =h2cos(β)sin(β)= \frac{h \cdot 2\cos(\beta)}{\sin(\beta)}

Expanding gives: AD=2hcos(β)sin(β)=2hcot(β)AD = \frac{2h \cdot \cos(\beta)}{\sin(\beta)} = 2h \cot(\beta)

Thus, the distance AD is expressed as 2hcot(β)2h \cot(\beta).

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;