Photo AI

'n Landskapskuns-tiaan beplan om blomme binne twee konsentris-sirkels rondom 'n vertikale lamppaal PQ te plant - NSC Mathematics - Question 7 - 2020 - Paper 2

Question icon

Question 7

'n-Landskapskuns-tiaan-beplan-om-blomme-binne-twee-konsentris-sirkels-rondom-'n-vertikale-lamppaal-PQ-te-plant-NSC Mathematics-Question 7-2020-Paper 2.png

'n Landskapskuns-tiaan beplan om blomme binne twee konsentris-sirkels rondom 'n vertikale lamppaal PQ te plant. R is 'n punt op die binneste sirkel en S is 'n punt o... show full transcript

Worked Solution & Example Answer:'n Landskapskuns-tiaan beplan om blomme binne twee konsentris-sirkels rondom 'n vertikale lamppaal PQ te plant - NSC Mathematics - Question 7 - 2020 - Paper 2

Step 1

Toon dat QS = 3r

96%

114 rated

Answer

Using the tangent function in triangle PQS, we know that:

tan30°=3rQS\tan 30° = \frac{\sqrt{3}r}{QS}

This implies:

QS=3rtan30°QS = \frac{\sqrt{3}r}{\tan 30°}

Since (\tan 30° = \frac{1}{\sqrt{3}}):

QS=3r13=3rQS = \frac{\sqrt{3}r}{\frac{1}{\sqrt{3}}} = 3r

Step 2

Bepaal, in terme van r, die oppervlakte van die blomtuin.

99%

104 rated

Answer

The area of the flower garden can be represented as the difference between the areas of the outer and inner circles:

Area=π(3r)2πr2=9πr2πr2=8πr2.\text{Area} = \pi (3r)^2 - \pi r^2 = 9\pi r^2 - \pi r^2 = 8\pi r^2.

Thus, the area is:

Area=8πr2\text{Area} = 8\pi r^2

Step 3

Toon aan dat RS = \frac{r}{10 - 6 \cos 2x}.

96%

101 rated

Answer

Using the cosine rule in triangle RSP, we can express RS as follows:

RS2=r2+(3r)22(r)(3r)cos2xRS^2 = r^2 + (3r)^2 - 2(r)(3r)\cos 2x

Which simplifies to:

RS2=r2+9r26r2cos2xRS^2 = r^2 + 9r^2 - 6r^2\cos 2x

Thus,

RS2=r2(16cos2x)RS^2 = r^2(1 - 6\cos 2x)

Therefore,

RS=r106cos2xRS = \frac{r}{\sqrt{10 - 6\cos 2x}}

Step 4

Indien r = 10 meter en x = 56°, bereken RS.

98%

120 rated

Answer

To find RS, substitute r and x into the equation derived in the previous step:

RS=10106cos(56°)RS = \frac{10}{\sqrt{10 - 6\cos(56°)}}

Calculating:

RS35mRS \approx 35 m

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;