Photo AI

Punt B, C en E lê in dieselfde horizontale vlak - NSC Mathematics - Question 7 - 2021 - Paper 2

Question icon

Question 7

Punt-B,-C-en-E-lê-in-dieselfde-horizontale-vlak-NSC Mathematics-Question 7-2021-Paper 2.png

Punt B, C en E lê in dieselfde horizontale vlak. ABCD is 'n reghoekige stuk plank. CDE is 'n driehoekige stuk plank met 'n regte hoek by C. Elk van die stukke plank ... show full transcript

Worked Solution & Example Answer:Punt B, C en E lê in dieselfde horizontale vlak - NSC Mathematics - Question 7 - 2021 - Paper 2

Step 1

7.1 Toon dat DC = \( \frac{BC}{4 \cos x} \)

96%

114 rated

Answer

In triangle ABC, we can use the sine rule:

[ \frac{CE}{BC} = \frac{\sin \angle BEC}{\sin \angle CEB} ]

Given that ( \angle BEC = 30° ) and ( \angle CEB = 2x ), we have:

[ CE = \frac{BC \cdot \sin(30°)}{\sin(2x)} ]

Using the double angle formula for sine, ( \sin(2x) = 2 \sin x \cdot \cos x ), we can express CE as:

[ CE = \frac{BC \cdot \frac{1}{2}}{2 \sin x \cos x} = \frac{BC}{4 \sin x \cos x} ]

Next, in triangle ACD:

[DC = \tan \angle DCE = \frac{CE}{BC} = \frac{BC \cdot \sin(30°)}{\sin(2x)} \Rightarrow DC = \frac{CE \cdot \cos x}{\sin x}\Rightarrow DC = \frac{4 \sin x \cos x}{4}\Rightarrow DC = \frac{BC}{4 \cos x} ] Therefore, we have shown that ( DC = \frac{BC}{4 \cos x} ).

Step 2

7.2 As x = 30°, toon dat die oppervlakte van ABCD = 3AB².

99%

104 rated

Answer

Substituting ( x = 30° ) into our previous equation results in:

[ DC = \frac{BC}{4 \cos(30°)} = \frac{BC}{4 \cdot \frac{\sqrt{3}}{2}} = \frac{BC}{2\sqrt{3}} ]

Given that AB is equal to DC and also to BC, we can equate:

[ AB = DC = BC ]

This gives us the area of rectangle ABCD as:

[ Area = AB \cdot DC = (AB)(BC) = (AB)(3AB) = 3AB² ]

Thus, we have demonstrated that the area of ABCD equals to ( 3AB² ).

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;