Photo AI

Die diagram hieronder toon 'n sonpaneel, ABCD, wat aan 'n plat stuk sementblad, EFCD, vasgeheg is - NSC Mathematics - Question 7 - 2019 - Paper 2

Question icon

Question 7

Die-diagram-hieronder-toon-'n-sonpaneel,-ABCD,-wat-aan-'n-plat-stuk-sementblad,-EFCD,-vasgeheg-is-NSC Mathematics-Question 7-2019-Paper 2.png

Die diagram hieronder toon 'n sonpaneel, ABCD, wat aan 'n plat stuk sementblad, EFCD, vasgeheg is. ABCD en EFCD is twee identiese ruiten. K is 'n punt op DC sodanig ... show full transcript

Worked Solution & Example Answer:Die diagram hieronder toon 'n sonpaneel, ABCD, wat aan 'n plat stuk sementblad, EFCD, vasgeheg is - NSC Mathematics - Question 7 - 2019 - Paper 2

Step 1

Bepaal AK in terme van x.

96%

114 rated

Answer

To find AK in terms of x, we use the sine function in triangle ADK:

sin60°=AKx\sin 60° = \frac{AK}{x}

Rearranging gives:

AK=xsin60°AK = x \cdot \sin 60°

Calculating, we know that (\sin 60° = \frac{\sqrt{3}}{2}), so:

AK=x32AK = x \cdot \frac{\sqrt{3}}{2}

Thus, the final answer is:

AK=x32AK = \frac{x \sqrt{3}}{2}

Step 2

Skryf die grootte van ∠KCF neer.

99%

104 rated

Answer

The size of ∠KCF is given as:

KCF=120°\angle KCF = 120°

Step 3

Bepaal die oppervlakte van ΔAKF in terme van x en y.

96%

101 rated

Answer

To determine the area of triangle ΔAKF, we use the formula:

Area=12AKKFsinAKF\text{Area} = \frac{1}{2} \cdot AK \cdot KF \cdot \sin \angle AKF

From previous calculation, we have:

AK=x32AK = \frac{x \sqrt{3}}{2}

For KF, using the cosine rule:

KF2=CF2+CK22CFCKcosKCFKF^2 = CF^2 + CK^2 - 2\cdot CF \cdot CK \cos KCF

Substituting the known values, we can solve for KF. Assuming CF = (\frac{x}{2}), we have:

KF2=(x2)2+(x2)22(x2)(x2)(cos120°)KF^2 = \left(\frac{x}{2}\right)^2 + \left(\frac{x}{2}\right)^2 - 2\left(\frac{x}{2}\right) \left(\frac{x}{2}\right) \left(\cos 120°\right)

Since (\cos 120° = -\frac{1}{2}):

KF2=x24+x24+x24=3x24KF^2 = \frac{x^2}{4} + \frac{x^2}{4} + \frac{x^2}{4} = \frac{3x^2}{4}

Thus:

KF=x32KF = \frac{x \sqrt{3}}{2}

Now substituting back into the area formula:

Area=12(x32)(x32)siny\text{Area} = \frac{1}{2} \cdot \left(\frac{x \sqrt{3}}{2}\right) \cdot \left(\frac{x \sqrt{3}}{2}\right) \cdot \sin y

This simplifies to:

Area=3x28siny\text{Area} = \frac{3x^2}{8} \cdot \sin y

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;