Photo AI

In die diagram hieronder is T 'n haak in die plafon van 'n kunsgalery - NSC Mathematics - Question 8 - 2021 - Paper 2

Question icon

Question 8

In-die-diagram-hieronder-is-T-'n-haak-in-die-plafon-van-'n-kunsgalery-NSC Mathematics-Question 8-2021-Paper 2.png

In die diagram hieronder is T 'n haak in die plafon van 'n kunsgalery. Q, S en R is punte op dieselfde horizontale vlak waarvoordaan drie persone na die haak T kyk. ... show full transcript

Worked Solution & Example Answer:In die diagram hieronder is T 'n haak in die plafon van 'n kunsgalery - NSC Mathematics - Question 8 - 2021 - Paper 2

Step 1

8.1 Bewys dat QS = 5 tan x

96%

114 rated

Answer

In triangle QSR, we can use the sine rule:

QSQR=sin(90°+x)sin(x)\frac{QS}{QR} = \frac{sin(90° + x)}{sin(x)}

Since ( sin(90° + x) = cos(x) ):

QS=QRsin(x)cos(x)=5tan(x)QS = QR \cdot \frac{sin(x)}{cos(x)} = 5 \cdot tan(x)

Step 2

8.2 Bewys dat die lengte van QT = 10 sin x

99%

104 rated

Answer

Using the sine rule again in triangle QTS:

QTTS=sin(180°2x)sin(x)\frac{QT}{TS} = \frac{sin(180° - 2x)}{sin(x)}

Substituting TS = 5 tan x:

QT=TSsin(x)sin(2x)=5tanxsin(x)sin(2x)QT = TS \cdot \frac{sin(x)}{sin(2x)} = 5 tan x \cdot \frac{sin(x)}{sin(2x)}

Using the identity for sin(2x) = 2sin(x)cos(x), we have:

QT=5tan(x)2sin(x)cos(x)=10sin(x)QT = 5 \cdot \frac{tan(x)}{2}\cdot \frac{sin(x)}{cos(x)} = 10 sin(x)

Step 3

8.3 Bereken die oppervlakte van ΔTQR as TQR = 70° en x = 25°.

96%

101 rated

Answer

The area of triangle ΔTQR can be calculated using:

Area=12QTQRsin(TQR)Area = \frac{1}{2} \cdot QT \cdot QR \cdot sin(TQR)

Substituting the values we found:

  • We have already determined that QT = 10 sin(x) when x = 25°: QT=10sin(25°)QT = 10 \cdot sin(25°)
  • And QR = 5.

Thus, the area becomes:

Area=12(10sin(25°))5sin(70°)Area = \frac{1}{2} \cdot (10 \cdot sin(25°)) \cdot 5 \cdot sin(70°)

Calculating this will give the final area.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;