Photo AI

Given: sin A = 2p and cos A = p 5.1.1 Determine the value of tan A - NSC Mathematics - Question 5 - 2017 - Paper 2

Question icon

Question 5

Given:--sin-A-=-2p-and-cos-A-=-p---5.1.1-Determine-the-value-of-tan-A-NSC Mathematics-Question 5-2017-Paper 2.png

Given: sin A = 2p and cos A = p 5.1.1 Determine the value of tan A. 5.1.2 Without using a calculator, determine the value of p, if A ∈ [180°; 270°]. 5.2 Deter... show full transcript

Worked Solution & Example Answer:Given: sin A = 2p and cos A = p 5.1.1 Determine the value of tan A - NSC Mathematics - Question 5 - 2017 - Paper 2

Step 1

5.1.1 Determine the value of tan A.

96%

114 rated

Answer

To find the value of tan A, we can use the definition of tangent in terms of sine and cosine:

tanA=sinAcosAtan A = \frac{sin A}{cos A}

Substituting the given values, we have:

tanA=2pp=2.tan A = \frac{2p}{p} = 2.

Step 2

5.1.2 Without using a calculator, determine the value of p, if A ∈ [180°; 270°].

99%

104 rated

Answer

Since A is in the range [180°, 270°], we know that sin A is negative and cos A is also negative in this quadrant. Using the Pythagorean identity:

sin2A+cos2A=1sin^2 A + cos^2 A = 1

Substituting the values:

(2p)2+p2=1(2p)^2 + p^2 = 1

which simplifies to:

4p2+p2=15p2=1p2=15p=154p^2 + p^2 = 1 \Rightarrow 5p^2 = 1 \Rightarrow p^2 = \frac{1}{5} \Rightarrow p = -\frac{1}{\sqrt{5}}

The negative value is chosen since both sine and cosine are negative in the third quadrant.

Step 3

5.2 Determine the general solution of 2sin²x - 5sinx + 2 = 0

96%

101 rated

Answer

To solve the equation, we will apply the quadratic formula. Letting s=sinxs = sin x, we rewrite the equation as:

2s25s+2=0.2s^2 - 5s + 2 = 0.
Using the quadratic formula:

s=b±b24ac2as=5±(5)242222s=5±25164s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\Rightarrow s = \frac{5 \pm \sqrt{(-5)^2 - 4 * 2 * 2}}{2 * 2} \Rightarrow s = \frac{5 \pm \sqrt{25 - 16}}{4}

This gives:

s=5±34s1=2s2=12.s = \frac{5 \pm 3}{4} \Rightarrow s_1 = 2 \quad s_2 = \frac{1}{2}.
Thus, we have s=sinx=2s = sin x = 2 with no solution in real numbers and s=sinx=12s = sin x = \frac{1}{2}.
The general solutions would be:

x=30°+k360° or 150°+k360°, where kZ.x = 30° + k \cdot 360° \text{ or } 150° + k \cdot 360°, \text{ where } k \in \mathbb{Z}.

Step 4

5.3.1 Expand sin(x + 300°) using an appropriate compound angle formula.

98%

120 rated

Answer

Using the sine addition formula, we have:

sin(x+300°)=sinxcos(300°)+cosxsin(300°).sin(x + 300°) = sin x \cdot cos(300°) + cos x \cdot sin(300°).
Knowing that:

cos(300°)=12andsin(300°)=32,cos(300°) = \frac{1}{2} \quad \text{and} \quad sin(300°) = -\frac{\sqrt{3}}{2},
we then write:

sin(x+300°)=sinx12cosx32.sin(x + 300°) = sin x \cdot \frac{1}{2} - cos x \cdot \frac{\sqrt{3}}{2}.

Step 5

5.3.2 Without using a calculator, determine the value of sin(x + 300°) - cos(x - 150°).

97%

117 rated

Answer

From the previous expansion, we have:

sin(x+300°)=12sinx32cosx.sin(x + 300°) = \frac{1}{2} sin x - \frac{\sqrt{3}}{2} cos x.
Now to find cos(x150°)cos(x - 150°), using the cosine subtraction formula gives:

cos(x150°)=cosxcos(150°)+sinxsin(150°)cos(x - 150°) = cos x \cdot cos(150°) + sin x \cdot sin(150°)

where:

cos(150°)=32extandsin(150°)=12.cos(150°) = -\frac{\sqrt{3}}{2}\quad ext{and} \quad sin(150°) = \frac{1}{2}.
So,

cos(x150°)=32cosx+12sinx.cos(x - 150°) = -\frac{\sqrt{3}}{2} cos x + \frac{1}{2} sin x.
Thus,

sin(x+300°)cos(x150°)=12sinx32cosx(32cosx+12sinx)sin(x + 300°) - cos(x - 150°) = \frac{1}{2} sin x - \frac{\sqrt{3}}{2} cos x - (-\frac{\sqrt{3}}{2} cos x + \frac{1}{2} sin x)

This simplifies to:

=0.= 0.

Step 6

5.4 Prove the identity: tan x + 1 = sin x + cos x / (sin x tan x + cos x)

97%

121 rated

Answer

Starting with the left-hand side (LHS):

LHS=tanx+1=sinxcosx+1=sinx+cosxcosx.LHS = tan x + 1 = \frac{sin x}{cos x} + 1 = \frac{sin x + cos x}{cos x}.
For the right-hand side (RHS):

RHS=sinx+cosx(sinxtanx)+cosx=sinx+cosxsin2xcosx+cosx=sinx+cosxsin2x+cos2xcosx.RHS = \frac{sin x + cos x}{(sin x tan x) + cos x} = \frac{sin x + cos x}{\frac{sin^2 x}{cos x} + cos x} = \frac{sin x + cos x}{\frac{sin^2 x + cos^2 x}{cos x}}.
As we know that:

sin2x+cos2x=1,sin^2 x + cos^2 x = 1,
this becomes:

RH=sinx+cosx1cosx=sinx+cosx.RH = \frac{sin x + cos x}{\frac{1}{cos x}} = sin x + cos x.
Thus, both sides are equal, proving the identity.

Step 7

5.5.1 Determine k as a single trigonometric ratio.

96%

114 rated

Answer

Starting from the equation:

sinx+cosx=1+k.sin x + cos x = \sqrt{1 + k}.
Square both sides gives:

(sinx+cosx)2=1+k.(sin x + cos x)^2 = 1 + k.
Expanding the left side:

sin2x+2sinxcosx+cos2x=1+k.sin^2 x + 2sin x cos x + cos^2 x = 1 + k.
Using the Pythagorean identity, we have:

1+2sinxcosx=1+kk=2sinxcosx.1 + 2sin x cos x = 1 + k \Rightarrow k = 2sin x cos x.

Step 8

5.5.2 Hence, determine the maximum value of sin x + cos x.

99%

104 rated

Answer

Given:

k=2sinxcosx,k = 2sin x cos x,
Using the formula:

sinx+cosx=1+k.sin x + cos x = \sqrt{1 + k}.
The maximum value of kk occurs when both sinxsin x and cosxcos x are at their maximum at angles of 45°:

kmax=1+1=2.k_{max} = 1 + 1 = 2.
Thus, the maximum value of sinx+cosx=2.sin x + cos x = \sqrt{2}.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;