Photo AI

In the diagram are the graphs of $f(x) = ext{sin} 2x$ and $h(x) = ext{cos}(x - 45^{ ext{o}})$ for the interval $x ext{ } i ext{ }[-180^{ ext{o}} ; 180^{ ext{o}}]$ - NSC Mathematics - Question 6 - 2017 - Paper 2

Question icon

Question 6

In-the-diagram-are-the-graphs-of-$f(x)-=--ext{sin}-2x$-and-$h(x)-=--ext{cos}(x---45^{-ext{o}})$-for-the-interval-$x--ext{--}--i--ext{-}[-180^{-ext{o}}-;-180^{-ext{o}}]$-NSC Mathematics-Question 6-2017-Paper 2.png

In the diagram are the graphs of $f(x) = ext{sin} 2x$ and $h(x) = ext{cos}(x - 45^{ ext{o}})$ for the interval $x ext{ } i ext{ }[-180^{ ext{o}} ; 180^{ ext{o}... show full transcript

Worked Solution & Example Answer:In the diagram are the graphs of $f(x) = ext{sin} 2x$ and $h(x) = ext{cos}(x - 45^{ ext{o}})$ for the interval $x ext{ } i ext{ }[-180^{ ext{o}} ; 180^{ ext{o}}]$ - NSC Mathematics - Question 6 - 2017 - Paper 2

Step 1

Write down the period of $f$

96%

114 rated

Answer

The period of the function f(x)=extsin2xf(x) = ext{sin} 2x is given by the formula: ext{Period} = rac{360^{ ext{o}}}{k} where kk is the coefficient of xx in the sine function. For f(x)f(x), k=2k = 2, so: ext{Period} = rac{360^{ ext{o}}}{2} = 180^{ ext{o}}.

Step 2

Determine the x-coordinate of B.

99%

104 rated

Answer

From the provided graph, point B is located at 75exto-75^{ ext{o}}. This can be inferred from the intersections of the two graphs, where we look for the xx value within the given range.

Step 3

Use the graphs to solve $2 ext{sin} x ext{cos} x ext{ } rac{1}{ ext{√}2}( ext{cos} x + ext{sin} x)$ for the interval $x ext{ } ext{ } i ext{ }[-180^{ ext{o}} ; 180^{ ext{o}}]$. Show all working.

96%

101 rated

Answer

To solve the equation, we start with: 2 ext{sin} x ext{cos} x = rac{1}{ ext{√}2}( ext{cos} x + ext{sin} x). We can rewrite the left side using the double angle identity: ext{sin}(2x) = rac{1}{ ext{√}2}( ext{cos} x + ext{sin} x).

Next, we rearrange and analyze the function over the interval [180exto;180exto][-180^{ ext{o}}; 180^{ ext{o}}]. To solve for xx, we can break it down further:

  1. Identify critical angles where both the left and right sides equate.
  2. Substitute known values into extsin(2x) ext{sin}(2x) to find potential solutions.
  3. Use the properties of trig functions to determine valid values of xx, ensuring they lie within the specified interval.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;