'n Landskapskunstenaar beplan om blomme binne twee konsentiese sikrels rondom 'n vertikale lamppaal PQ te plant - NSC Mathematics - Question 7 - 2020 - Paper 2
Question 7
'n Landskapskunstenaar beplan om blomme binne twee konsentiese sikrels rondom 'n vertikale lamppaal PQ te plant. R is 'n punt op die binerste sirkel en S is 'n punt ... show full transcript
Worked Solution & Example Answer:'n Landskapskunstenaar beplan om blomme binne twee konsentiese sikrels rondom 'n vertikale lamppaal PQ te plant - NSC Mathematics - Question 7 - 2020 - Paper 2
Step 1
7.1 Toon dat QS = 3r
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To prove that QS = 3r, we can use the tangent ratio from the right triangle formed by points P, S, and Q.
an(30exto)=extheightQS=3rQS.
From the trigonometric ratio, we also know that:
QS=3rtan(30exto).
Substituting for \tan(30^ ext{o}) = \frac{1}{\sqrt{3}}:
QS=3r×31=r.
Thus,
QS=3r.
Step 2
7.2 Bepaal, in terme van r, die oppervlakte van die blomtuin.
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
The area of the flower garden can be found by subtracting the area of the inner circle from the area of the outer circle.
Area of outer circle (radius QS = 3r):
Aouter=π(3r)2=9πr2.
Area of inner circle (radius r):
Ainner=πr2.
Therefore, the area of the flower garden:
A=Aouter−Ainner=9πr2−πr2=8πr2.
Step 3
7.3 Toon aan dat RS = r/10 - 6 cos 2x.
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To prove that RS = r/10 - 6 cos 2x, we use the cosine rule in triangle PSR:
RS2=r2+(3r)2−2(r)(3r)cos(2x).
Expanding this gives:
RS2=r2+9r2−6r2cos(2x),
which simplifies to:
RS2=(r2(10−6cos(2x))).
Taking the square root:
RS=10−6cos(2x)r.
Step 4
7.4 Indien r = 10 meter en x = 56º, bereken RS.
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!