Photo AI

'n Landskapskunstenaar beplan om blomme binne twee konsentiese sikrels rondom 'n vertikale lamppaal PQ te plant - NSC Mathematics - Question 7 - 2020 - Paper 2

Question icon

Question 7

'n-Landskapskunstenaar-beplan-om-blomme-binne-twee-konsentiese-sikrels-rondom-'n-vertikale-lamppaal-PQ-te-plant-NSC Mathematics-Question 7-2020-Paper 2.png

'n Landskapskunstenaar beplan om blomme binne twee konsentiese sikrels rondom 'n vertikale lamppaal PQ te plant. R is 'n punt op die binerste sirkel en S is 'n punt ... show full transcript

Worked Solution & Example Answer:'n Landskapskunstenaar beplan om blomme binne twee konsentiese sikrels rondom 'n vertikale lamppaal PQ te plant - NSC Mathematics - Question 7 - 2020 - Paper 2

Step 1

7.1 Toon dat QS = 3r

96%

114 rated

Answer

To prove that QS = 3r, we can use the tangent ratio from the right triangle formed by points P, S, and Q.

an(30exto)=QSextheight=QS3r. an(30^ ext{o}) = \frac{QS}{ ext{height}} = \frac{QS}{\sqrt{3r}}.

From the trigonometric ratio, we also know that:

QS=3rtan(30exto). QS = \sqrt{3r} \tan(30^ ext{o}).

Substituting for \tan(30^ ext{o}) = \frac{1}{\sqrt{3}}:

QS=3r×13=r. QS = \sqrt{3r} \times \frac{1}{\sqrt{3}} = r.

Thus,

QS=3r. QS = 3r.

Step 2

7.2 Bepaal, in terme van r, die oppervlakte van die blomtuin.

99%

104 rated

Answer

The area of the flower garden can be found by subtracting the area of the inner circle from the area of the outer circle.

  1. Area of outer circle (radius QS = 3r):
Aouter=π(3r)2=9πr2. A_{outer} = \pi (3r)^{2} = 9\pi r^{2}.
  1. Area of inner circle (radius r):
Ainner=πr2. A_{inner} = \pi r^{2}.
  1. Therefore, the area of the flower garden:
A=AouterAinner=9πr2πr2=8πr2. A = A_{outer} - A_{inner} = 9\pi r^{2} - \pi r^{2} = 8\pi r^{2}.

Step 3

7.3 Toon aan dat RS = r/10 - 6 cos 2x.

96%

101 rated

Answer

To prove that RS = r/10 - 6 cos 2x, we use the cosine rule in triangle PSR:

RS2=r2+(3r)22(r)(3r)cos(2x). RS^{2} = r^{2} + (3r)^{2} - 2(r)(3r)\cos(2x).

Expanding this gives:

RS2=r2+9r26r2cos(2x), RS^{2} = r^{2} + 9r^{2} - 6r^{2}\cos(2x),

which simplifies to:

RS2=(r2(106cos(2x))). RS^{2} = (r^{2}(10 - 6\cos(2x))).

Taking the square root:

RS=r106cos(2x). RS = \frac{r}{10 - 6\cos(2x)}.

Step 4

7.4 Indien r = 10 meter en x = 56º, bereken RS.

98%

120 rated

Answer

Substituting r = 10 meters and x = 56º:

Convert 56º to radians:

RS=10106cos(56exto). RS = \frac{10}{10 - 6\cos(56^ ext{o})}.

Calculating \cos(56^ ext{o}):

RS=10106(0.559)=10103.354=106.6461.505. RS = \frac{10}{10 - 6(0.559)} = \frac{10}{10 - 3.354} = \frac{10}{6.646} \approx 1.505.

Thus, RS ≈ 1.51 meters.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;