SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home NSC Mathematics Trigonometry 5.1 Gegee: sin 2x = \frac{\sqrt{15}}{8} en 0° ≤ 2x ≤ 90°
5.1 Gegee: sin 2x = \frac{\sqrt{15}}{8} en 0° ≤ 2x ≤ 90° - NSC Mathematics - Question 5 - 2017 - Paper 2 Question 5
View full question 5.1 Gegee: sin 2x = \frac{\sqrt{15}}{8} en 0° ≤ 2x ≤ 90°.
Bepaal met behulp van ‘n diagram en sonder die gebruik van ‘n sakrekenaar die waarde van cos x.
5.2 Veree... show full transcript
View marking scheme Worked Solution & Example Answer:5.1 Gegee: sin 2x = \frac{\sqrt{15}}{8} en 0° ≤ 2x ≤ 90° - NSC Mathematics - Question 5 - 2017 - Paper 2
5.1 Bepaal met behulp van ‘n diagram en sonder die gebruik van ‘n sakrekenaar die waarde van cos x. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Om cos x te bepaal, kan ons gebruik maak van die gespesifiseerde waarde van sin 2x:
Gegee:
e x t s i n 2 x = 15 8 ext{sin } 2x = \frac{\sqrt{15}}{8} e x t s in 2 x = 8 15
Gebruik die verhouding e x t s i n 2 + e x t c o s 2 = 1 ext{sin}^2 + ext{cos}^2 = 1 e x t s in 2 + e x t cos 2 = 1 :
Bereken sin² 2x:
e x t s i n 2 2 x = ( 15 8 ) 2 = 15 64 ext{sin}^2 2x = \left(\frac{\sqrt{15}}{8}\right)^2 = \frac{15}{64} e x t s in 2 2 x = ( 8 15 ) 2 = 64 15
Bereken cos² 2x:
e x t c o s 2 2 x = 1 − e x t s i n 2 2 x = 1 − 15 64 = 49 64 ext{cos}^2 2x = 1 - ext{sin}^2 2x = 1 - \frac{15}{64} = \frac{49}{64} e x t cos 2 2 x = 1 − e x t s in 2 2 x = 1 − 64 15 = 64 49
Neem die vierkantswortel:
e x t c o s 2 x = 49 64 = 7 8 ext{cos } 2x = \sqrt{\frac{49}{64}} = \frac{7}{8} e x t cos 2 x = 64 49 = 8 7
Daarom is cos x gelyk aan:
e x t c o s x = cos ( 2 x 2 ) = 7 8 . ext{cos } x = \text{cos }\left(\frac{2x}{2}\right) = \frac{7}{8}. e x t cos x = cos ( 2 2 x ) = 8 7 .
5.2 Vereenvoudig die volgende uitdrukking tot een trigonometriese verhouding van θ. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die stelling is:
sin ( 180 ° − θ ) . sin ( 540 ° − θ ) . cos ( θ − 90 ° ) \text{sin}(180° - θ) . \text{sin}(540° - θ) . \text{cos}(θ - 90°) sin ( 180° − θ ) . sin ( 540° − θ ) . cos ( θ − 90° )
en
tan ( − θ ) . sin ( 360 ° − θ ) . \text{tan}(−θ) . \text{sin}(360° - θ). tan ( − θ ) . sin ( 360° − θ ) .
Begin met die vereenvoudiging:
\text{sin}(180° - θ) = \text{sin} θ,
\text{sin}(540° - θ) = \text{sin}(180° + 360° - θ) = -\text{sin} θ,
\text{cos}(θ - 90°) = \text{sin} θ,
Из terwyl,
\text{tan}(−θ) = -\text{tan } θ,
\text{sin}(360° - θ) = -\text{sin}(θ).
Daarom:
sin ( θ ) . ( − sin θ ) . sin θ = − sin 2 θ . \text{sin}(θ) . (-\text{sin} θ) . \text{sin} θ = -\text{sin}^2 θ. sin ( θ ) . ( − sin θ ) . sin θ = − sin 2 θ .
Dit vereenvoudig na:
− sin 2 θ = − tan θ ⋅ sin θ . - \text{sin}^2 θ = -\text{tan} θ\cdot\text{sin} θ. − sin 2 θ = − tan θ ⋅ sin θ .
5.3.1 Bewys die bestaande identiteit. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Begin met die linkerhandse sy:
L H S = sin ( 5 x ) cos ( 3 x ) − cos ( 5 x ) sin ( 3 x ) tan ( 2 x ) − 1 . LHS = \frac{\text{sin}(5x)\text{cos}(3x) - \text{cos}(5x)\text{sin}(3x)}{\text{tan}(2x) - 1}. L H S = tan ( 2 x ) − 1 sin ( 5 x ) cos ( 3 x ) − cos ( 5 x ) sin ( 3 x ) .
Plaas die identiteite in die uitdrukking:
Gebruik die identiteit e x t s i n ( A − B ) = e x t s i n ( A ) e x t c o s ( B ) − e x t c o s ( A ) e x t s i n ( B ) ext{sin}(A - B) = ext{sin}(A) ext{cos}(B) - ext{cos}(A) ext{sin}(B) e x t s in ( A − B ) = e x t s in ( A ) e x t cos ( B ) − e x t cos ( A ) e x t s in ( B ) :
e x t s i n ( 5 x − 3 x ) = e x t s i n ( 2 x ) ; ext{sin}(5x - 3x) = ext{sin}(2x); e x t s in ( 5 x − 3 x ) = e x t s in ( 2 x ) ;
dus korrelateer die stelling.
Simplifiseer en herskryf:
= e x t s i n ( 2 x ) ; = ext{sin}(2x); = e x t s in ( 2 x ) ;
dus is LHS = RHS.
5.3.2 Vir watter waarde(s) van x sal die bestaande identiteit ongedefinieerd wees vir 0° ≤ x ≤ 180°. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die identiteit kan ongedefinieerd wees wanneer die noemer van e x t t a n ( 2 x ) ext{tan}(2x) e x t t an ( 2 x ) nul is:
a n ( 2 x ) = 0 e x t w a n n e e r 2 x = 0 ° e x t o f 180 ° . an(2x) = 0 ext{ wanneer } 2x = 0° ext{ of } 180°. an ( 2 x ) = 0 e x t w ann eer 2 x = 0° e x t o f 180°.
Dus:
2 x = 0 ° 2x = 0° 2 x = 0° wat verwys na x = 0 ° . x = 0°. x = 0°.
2 x = 180 ° 2x = 180° 2 x = 180° wat verwys na x = 90 ° . x = 90°. x = 90°.
Die waardes van x wat die identiteit ongedefinieerd maak is 0 ° 0° 0° en 90 ° . 90°. 90°.
Join the NSC students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved