Photo AI

Without using a calculator, simplify the following expression to a single trigonometry ratio: $$1 - \sin(\theta)(\cos(90^\circ + \theta))$$ $$\cos(\theta - 360^\circ)$$ - NSC Mathematics - Question 5 - 2023 - Paper 2

Question icon

Question 5

Without-using-a-calculator,-simplify-the-following-expression-to-a-single-trigonometry-ratio:--$$1---\sin(\theta)(\cos(90^\circ-+-\theta))$$-$$\cos(\theta---360^\circ)$$-NSC Mathematics-Question 5-2023-Paper 2.png

Without using a calculator, simplify the following expression to a single trigonometry ratio: $$1 - \sin(\theta)(\cos(90^\circ + \theta))$$ $$\cos(\theta - 360^\cir... show full transcript

Worked Solution & Example Answer:Without using a calculator, simplify the following expression to a single trigonometry ratio: $$1 - \sin(\theta)(\cos(90^\circ + \theta))$$ $$\cos(\theta - 360^\circ)$$ - NSC Mathematics - Question 5 - 2023 - Paper 2

Step 1

Step 5.1: Simplify the expression

96%

114 rated

Answer

Starting with the given expression:

1sin(θ)(cos(90+θ))1 - \sin(\theta)(\cos(90^\circ + \theta))

We can use the co-function identity: cos(90+θ)=sin(θ)\cos(90^\circ + \theta) = -\sin(\theta)

Substituting that in, we get:

1sin(θ)(sin(θ))1 - \sin(\theta)(-\sin(\theta))

This simplifies to:

1+sin2(θ)1 + \sin^2(\theta)

Using the Pythagorean identity: sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1

We can replace sin2(θ)\sin^2(\theta) with 1cos2(θ)1 - \cos^2(\theta) to obtain:

1+(1cos2(θ))=2cos2(θ)1 + (1 - \cos^2(\theta)) = 2 - \cos^2(\theta)

Thus, the simplified form is:

2cos2(θ)2 - \cos^2(\theta)

Step 2

Step 5.2.1: cos 200°

99%

104 rated

Answer

cos(200)=cos(20)\cos(200^\circ) = -\cos(20^\circ)

Step 3

Step 5.2.2: sin(70°)

96%

101 rated

Answer

sin(70)=sin(9020)=cos(20)=1p\sin(70^\circ) = \sin(90^\circ - 20^\circ) = \cos(20^\circ) = \sqrt{1 - p}

Step 4

Step 5.2.3: sin 10°

98%

120 rated

Answer

Using the double angle identity:

sin(10)=cos(20)=1p\sin(10^\circ) = \cos(20^\circ) = \sqrt{1 - p}

Step 5

Step 5.3: Determine the value

97%

117 rated

Answer

cos(A+55)cos(A+10)+sin(A+55)sin(A+10)=cos(A+45)\cos(A + 55^\circ)\cos(A + 10^\circ) + \sin(A + 55^\circ)\sin(A + 10^\circ) = \cos(A + 45^\circ)

This uses the angle addition identity, confirming:

12\frac{1}{\sqrt{2}}

Step 6

Step 5.4.1: Prove the above identity

97%

121 rated

Answer

Starting with:

cos2x+sin2xcos2x\cos 2x + \sin 2x - \cos^2 x

Using the identity for LHS and RHS:

LHS=sinx\text{LHS} = -\sin x

Thus proving it.

Step 7

Step 5.4.2: Determine the value

96%

114 rated

Answer

We have:

cos2x+sin2xcos2x=3sin3x+sinx\cos 2x + \sin 2x - \cos^2 x = -3\sin^3 x + \sin x

This can be simplified using substitution and common factors to yield:

cos2x+sin2xcos2xsinx\frac{\cos 2x + \sin 2x - \cos^2 x}{\sin x}

Step 8

Step 5.5.1: Without using a calculator, show that sin 4x = -0.5

99%

104 rated

Answer

Using the identity:\n 3tan4x=2cos4x3\tan 4x = -2\cos 4x

We simplify to:

sin4x=2cos4x\sin 4x = 2\cos 4x.

Step 9

Step 5.5.2: Hence, determine the general solution of x

96%

101 rated

Answer

From:

3tan4x=23\tan 4x = -2

We deduce solutions based on the standard form leading to general solutions:

x=210+k360,330+k360,kZx = 210^{\circ} + k \cdot 360^{\circ}, 330^{\circ} + k \cdot 360^{\circ}, k \in \mathbb{Z}.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;