5.1 Vereenvoudig die volgende uitdrukking na EEN trigonometriese term:
\[
\frac{\sin x}{\cos x \cdot \tan x} + \frac{\sin(180^{\circ} + x) \cdot \cos(90^{\circ} - x)}{\cos x \cdot \tan x}
\]
5.2 Sonder om 'n sakrekenaar te gebruik, bepaal die waarde van:
\[\frac{\sin 35^{\circ} - \cos 35^{\circ}}{4 \sin 10^{\circ}}\]
5.3 Gee: \(\cos 26^{\circ} = m\)
5.4 Sonder om 'n sakrekenaar te gebruik, bepaal \(2 \sin 77^{\circ} = ?\) in terme van m - NSC Mathematics - Question 5 - 2019 - Paper 2
Question 5
5.1 Vereenvoudig die volgende uitdrukking na EEN trigonometriese term:
\[
\frac{\sin x}{\cos x \cdot \tan x} + \frac{\sin(180^{\circ} + x) \cdot \cos(90^{\circ} - x... show full transcript
Worked Solution & Example Answer:5.1 Vereenvoudig die volgende uitdrukking na EEN trigonometriese term:
\[
\frac{\sin x}{\cos x \cdot \tan x} + \frac{\sin(180^{\circ} + x) \cdot \cos(90^{\circ} - x)}{\cos x \cdot \tan x}
\]
5.2 Sonder om 'n sakrekenaar te gebruik, bepaal die waarde van:
\[\frac{\sin 35^{\circ} - \cos 35^{\circ}}{4 \sin 10^{\circ}}\]
5.3 Gee: \(\cos 26^{\circ} = m\)
5.4 Sonder om 'n sakrekenaar te gebruik, bepaal \(2 \sin 77^{\circ} = ?\) in terme van m - NSC Mathematics - Question 5 - 2019 - Paper 2
Step 1
Vereenvoudig die volgende uitdrukking na EEN trigonometriese term:
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die uitdrukking is:
[
\frac{\sin x}{\cos x \cdot \tan x} + \frac{\sin(180^{\circ} + x) \cdot \cos(90^{\circ} - x)}{\cos x \cdot \tan x}
]
Hierdie kan vereenvoudig word as:
[
\frac{\sin x}{\cos x \cdot \tan x} + \frac{\sin x \cdot \cos x}{\cos x \cdot \tan x}
]
Kom ons hou net die sin funksies:
[
\frac{\sin x (1 + \sin x)}{\cos x \cdot \tan x} = \frac{\sin x(1 + \sin x)}{\cos^2 x}
]
Finale vereenvoudiging:
[
\cos^2 x = 1 - \sin^2 x
]
Step 2
Sonder om 'n sakrekenaar te gebruik, bepaal die waarde van: \(\frac{\sin 35^{\circ} - \cos 35^{\circ}}{4 \sin 10^{\circ}}\)
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Bepaal die algemene oplossing van \(f(x) = \tan 165^{\circ}\)
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die vergelyking kan herlei word met behulp van inverse tangens:
[x + 25^{\circ} = 165^{\circ} + n \cdot 180^{\circ} \implies x = 140^{\circ} + n \cdot 180^{\circ} - 25^{\circ}
]
Step 6
Bepaal die waardes van \(x\) waaroor \(f(x)\) in die interval \(x \in [0^{\circ}; 360^{\circ}]\) 'n minimum waarde sal hê.
97%
121 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die minimum waarde vind plaas wanneer:
[x = 270^{\circ}]
Vir die minimum waarde van (f(x)):
(x = 270^{\circ}, 260^{\circ})