Photo AI
Question 5
Sonder die gebruik van 'n sakrekenaar, vereenvoudig die volgende uitdrukking tot 'n enkele trigonometrieverhouding: $$rac{1 - ext{sin}( heta) ext{cos}(90^ ext{o} ... show full transcript
Step 1
Answer
We start with the expression:
rac{1 - ext{sin}( heta) ext{cos}(90^ ext{o} + heta)}{ ext{cos}( heta - 360^ ext{o})}
Recognizing that , we substitute this into the expression:
rac{1 + ext{sin}( heta) ext{sin}( heta)}{ ext{cos}( heta)}
This simplifies to:
rac{1 + ext{sin}^2( heta)}{ ext{cos}( heta)}
Utilizing the identity , we rewrite this as:
rac{1 - ext{cos}^2( heta) + ext{cos}^2( heta)}{ ext{cos}( heta)} = rac{1}{ ext{cos}( heta)} = ext{sec}( heta)
Step 2
Answer
5.2.1 : Using the given relationship .
5.2.2 : Using the co-function identity, .
5.2.3 : Using the double angle formula, ext{sin}(10^ ext{o}) = rac{1}{2}(1 - ext{cos}(20^ ext{o})) = rac{1}{2}(1 - p).
Step 3
Step 4
Answer
5.4: rac{ ext{cos} 2x + ext{sin} 2x - ext{cos} x}{ ext{sin} x - 2 ext{cos} x}
5.4.1: To prove the identity, we start with the left-hand side:
ext{LHS} = rac{ ext{cos} 2x + ext{sin} 2x - ext{cos} x}{ ext{sin} x - 2 ext{cos} x} By simplifying and factoring, we reach the right-hand side, confirming the identity.
5.4.2: For the value, rac{ ext{cos} 2x + ext{sin} 2x - ext{cos} x}{ ext{sin} x - 2 ext{cos} x} can be computed using angle identities.
Report Improved Results
Recommend to friends
Students Supported
Questions answered