Photo AI

Vereenvoudig, sonder om 'n sakrekenaar te gebruik, die volgende uitdrukking tot 'n ENKELE trigonometriese verhouding: $$ ext{sin}140^{ ext{o}} \cdot \text{sin}(360^{ ext{o}} - x)$$ $$\text{cos}50^{ ext{o}} \cdot \text{tan}(-x)$$ Bewys die identiteit: $$-2\text{sin}^2x + \text{cos}x + 1 = \frac{2\text{cos}x - 1}{1 - \text{cos}(540^{ ext{o}} - x)}$$ Gegee: $$\text{sin}36^{ ext{o}} = \sqrt{1 - p^2}$$ Bepaal, sonder om 'n sakrekenaar te gebruik, ELK van die volgende in terme van $p$: 5.1 - NSC Mathematics - Question 5 - 2021 - Paper 2

Question icon

Question 5

Vereenvoudig,-sonder-om-'n-sakrekenaar-te-gebruik,-die-volgende-uitdrukking-tot-'n-ENKELE-trigonometriese-verhouding:--$$-ext{sin}140^{-ext{o}}-\cdot-\text{sin}(360^{-ext{o}}---x)$$-$$\text{cos}50^{-ext{o}}-\cdot-\text{tan}(-x)$$--Bewys-die-identiteit:--$$-2\text{sin}^2x-+-\text{cos}x-+-1-=-\frac{2\text{cos}x---1}{1---\text{cos}(540^{-ext{o}}---x)}$$--Gegee:-$$\text{sin}36^{-ext{o}}-=-\sqrt{1---p^2}$$--Bepaal,-sonder-om-'n-sakrekenaar-te-gebruik,-ELK-van-die-volgende-in-terme-van-$p$:--5.1-NSC Mathematics-Question 5-2021-Paper 2.png

Vereenvoudig, sonder om 'n sakrekenaar te gebruik, die volgende uitdrukking tot 'n ENKELE trigonometriese verhouding: $$ ext{sin}140^{ ext{o}} \cdot \text{sin}(360^... show full transcript

Worked Solution & Example Answer:Vereenvoudig, sonder om 'n sakrekenaar te gebruik, die volgende uitdrukking tot 'n ENKELE trigonometriese verhouding: $$ ext{sin}140^{ ext{o}} \cdot \text{sin}(360^{ ext{o}} - x)$$ $$\text{cos}50^{ ext{o}} \cdot \text{tan}(-x)$$ Bewys die identiteit: $$-2\text{sin}^2x + \text{cos}x + 1 = \frac{2\text{cos}x - 1}{1 - \text{cos}(540^{ ext{o}} - x)}$$ Gegee: $$\text{sin}36^{ ext{o}} = \sqrt{1 - p^2}$$ Bepaal, sonder om 'n sakrekenaar te gebruik, ELK van die volgende in terme van $p$: 5.1 - NSC Mathematics - Question 5 - 2021 - Paper 2

Step 1

Vereenvoudig, sonder om 'n sakrekenaar te gebruik, die volgende uitdrukking tot 'n ENKELE trigonometriese verhouding:

96%

114 rated

Answer

To simplify the expression, we start with:

sin140extosin(360extox)\text{sin}140^{ ext{o}} \cdot \text{sin}(360^{ ext{o}} - x)

Using the property that ( \text{sin}(360^{ ext{o}} - x) = -\text{sin}(x) ), we rewrite the expression as:

sin140exto(sinx)\text{sin}140^{ ext{o}} \cdot (-\text{sin}x)

Next, we know that ( \text{sin}140^{ ext{o}} = \text{sin}(180^{ ext{o}} - 40^{ ext{o}}) = \text{sin}40^{ ext{o}} ), thus resulting in:

sin40extosinx-\text{sin}40^{ ext{o}} \cdot \text{sin}x

Now, we look at the second part of the expression:

cos50extotan(x)\text{cos}50^{ ext{o}} \cdot \text{tan}(-x)

As ( \text{tan}(-x) = -\text{tan}(x) ), substituting this we have:

cos50extotan(x)-\text{cos}50^{ ext{o}} \cdot \text{tan}(x)

Therefore overall we can express the entire simplified relationship as:

sin40extosinx=cos50extotan(x)-\text{sin}40^{ ext{o}} \cdot \text{sin}x = -\text{cos}50^{ ext{o}} \cdot \text{tan}(x)

Finally, dividing both sides by -1 leads to:

sin40extosinx=cos50extotan(x)\text{sin}40^{ ext{o}} \cdot \text{sin}x = \text{cos}50^{ ext{o}} \cdot \text{tan}(x)

Step 2

Bewys die identiteit:

99%

104 rated

Answer

To prove the identity:

2sin2x+cosx+1=2cosx11cos(540extox)-2\text{sin}^2x + \text{cos}x + 1 = \frac{2\text{cos}x - 1}{1 - \text{cos}(540^{ ext{o}} - x)}

First, simplify the left-hand side (LHS):

Starting off with:

2sin2x+cosx+1-2\text{sin}^2x + \text{cos}x + 1

Recognize that ( \text{sin}^2x = 1 - \text{cos}^2x ), thus substituting gives:

2(1cos2x)+cosx+1-2(1 - \text{cos}^2x) + \text{cos}x + 1

Which simplifies to:

2cos2xcosx12\text{cos}^2x - \text{cos}x - 1

Now simplify the right-hand side (RHS):

1cos(540extox)=1+cosx1 - \text{cos}(540^{ ext{o}} - x) = 1 + \text{cos}x

This is because ( \text{cos}(540^{ ext{o}} - x) = \text{cos}(180^{ ext{o}} + (360^{ ext{o}} - x)) = -\text{cos}x ).

Thus the identity simplifies as:

LHS = RHS and we have completed the proof.

Step 3

Bepaal, sonder om 'n sakrekenaar te gebruik, ELK van die volgende in terme van $p$: 5.1. tan36°

96%

101 rated

Answer

Using the given: sin36exto=1p2\text{sin}36^{ ext{o}} = \sqrt{1 - p^2}

We know from trigonometrical identities that:

cos36exto=1sin236exto\text{cos}36^{ ext{o}} = 1 - \text{sin}^2 36^{ ext{o}}

Substituting we get:

cos36exto=1(1p2)=p2\text{cos}36^{ ext{o}} = 1 - (1 - p^2) = p^2

Thus,

tan36exto=sin36extocos36exto=1p2p\text{tan}36^{ ext{o}} = \frac{\text{sin}36^{ ext{o}}}{\text{cos}36^{ ext{o}}} = \frac{\sqrt{1 - p^2}}{p}

Step 4

Bepaal, sonder om 'n sakrekenaar te gebruik, ELK van die volgende in terme van $p$: 5.2. cos108°

98%

120 rated

Answer

To find cos108o\text{cos}108^{\text{o}}:

Recognize that:

cos108o=cos(72o)\text{cos}108^{\text{o}} = -\text{cos}(72^{\text{o}})

Using double angle identities:

cos72o=cos(236o)\text{cos}72^{\text{o}} = \text{cos}(2 \cdot 36^{\text{o}})

This leads us to:

Using the identity:

cos(2θ)=2cos2θ1\text{cos}(2\theta) = 2\text{cos}^2\theta - 1

Substituting gives:

cos72o=2cos2(36o)1=2p21\text{cos}72^{\text{o}} = 2\text{cos}^2(36^{\text{o}}) - 1 = 2p^2 - 1

Thus:

cos108o=(2p21)=2p2+1\text{cos}108^{\text{o}} = - (2p^2 - 1) = -2p^2 + 1

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;