Photo AI

5.1 Simplify the expression to a single trigonometric term: tan(-x)cosxsin(-x-180°)-1 5.2 Given: cos 35° = m Without using a calculator, determine the value of EACH of the following in terms of m: 5.2.1 cos 215° 5.2.2 sin 20° 5.3 Determine the general solution of: cos 4x.cos x + sin 4x.sin x = -0.7 5.4 Prove the identity: sin 4x.cos 2x - 2cos 4x.sin x.cos x tan 2x = cos^3 x - sin^3 x - NSC Mathematics - Question 5 - 2021 - Paper 2

Question icon

Question 5

5.1-Simplify-the-expression-to-a-single-trigonometric-term:--tan(-x)cosxsin(-x-180°)-1--5.2-Given:-cos-35°-=-m--Without-using-a-calculator,-determine-the-value-of-EACH-of-the-following-in-terms-of-m:--5.2.1-cos-215°-5.2.2-sin-20°--5.3-Determine-the-general-solution-of:--cos-4x.cos-x-+-sin-4x.sin-x-=--0.7--5.4-Prove-the-identity:--sin-4x.cos-2x---2cos-4x.sin-x.cos-x--tan-2x-=-cos^3-x---sin^3-x-NSC Mathematics-Question 5-2021-Paper 2.png

5.1 Simplify the expression to a single trigonometric term: tan(-x)cosxsin(-x-180°)-1 5.2 Given: cos 35° = m Without using a calculator, determine the value of EA... show full transcript

Worked Solution & Example Answer:5.1 Simplify the expression to a single trigonometric term: tan(-x)cosxsin(-x-180°)-1 5.2 Given: cos 35° = m Without using a calculator, determine the value of EACH of the following in terms of m: 5.2.1 cos 215° 5.2.2 sin 20° 5.3 Determine the general solution of: cos 4x.cos x + sin 4x.sin x = -0.7 5.4 Prove the identity: sin 4x.cos 2x - 2cos 4x.sin x.cos x tan 2x = cos^3 x - sin^3 x - NSC Mathematics - Question 5 - 2021 - Paper 2

Step 1

Simplify the expression to a single trigonometric term:

96%

114 rated

Answer

To simplify the expression tan(x)cosxsin(x180°)1tan(-x)cosxsin(-x-180°)-1, we begin by applying the properties of trigonometric functions.

  1. Recall that tan(x)=tan(x)tan(-x) = -tan(x) and sin(x)=sin(x)sin(-x) = -sin(x):

    Thus, exttan(x)cosxsin(x180°)1=tan(x)cosx(sin(x))1 ext{tan}(-x)cosxsin(-x-180°)-1 = -tan(x)cosx(-sin(x)) - 1

  2. The sine function changes sign as follows:

    tan(x)cosx(sin(x))1=tan(x)cosxsin(x)1-tan(x)cosx(-sin(x)) - 1 = tan(x)cosxsin(x) - 1

  3. Now, using the identity tan(x)=sin(x)cos(x)tan(x) = \frac{sin(x)}{cos(x)}, substitute:

    =sin(x)cos(x)cosxsin(x)1= \frac{sin(x)}{cos(x)}cosxsin(x) - 1

  4. This simplifies to:

    =sin2(x)1= sin^2(x) - 1

  5. Using the Pythagorean identity, sin2(x)+cos2(x)=1sin^2(x) + cos^2(x) = 1, we find:

    =cos2(x)= -cos^2(x)

Step 2

5.2.1 cos 215°

99%

104 rated

Answer

To find cos(215°)cos(215°), we can use the reduction formula:

  1. Rewrite 215°215° as 180°+35°180° + 35°.
  2. Therefore, cos(215°)=cos(35°)=mcos(215°) = -cos(35°) = -m

Step 3

5.2.2 sin 20°

96%

101 rated

Answer

To compute sin(20°)sin(20°) in terms of mm:

  1. Use the co-function identity, which gives sin(20°)=cos(70°)sin(20°) = cos(70°).

  2. Rewrite 70°70° as 90°20°90° - 20°:

    sin(20°)=cos(35°+35°)sin(20°) = cos(35° + 35°)

  3. Using the double angle formulas, we expand:

    =2cos(35°)sin(35°)=2mextsqrt1m2= 2cos(35°)sin(35°) = 2m ext{sqrt{1-m^2}}

Step 4

5.3 Determine the general solution of:

98%

120 rated

Answer

To solve the equation cos4x.cosx+sin4x.sinx=0.7cos 4x.cos x + sin 4x.sin x = -0.7

  1. Express the left side using the cosine identity:

    cos(4xx)=cos(3x)=0.7cos(4x - x) = cos(3x) = -0.7

  2. Finding the angles for 3x3x:

    3x=180°+45.57°+kimes360°extor3x=180°45.57°+kimes360°3x = 180° + 45.57° + k imes 360° ext{ or } 3x = 180° - 45.57° + k imes 360°

  3. This simplifies to two cases:

    Case 1: 3x=134.43°+kimes360°extor3x=225.57°+kimes360°3x = 134.43° + k imes 360° ext{ or } 3x = 225.57° + k imes 360°

    Thus,

    x=134.43°3+kimes120°extorx=225.57°3+kimes120°x = \frac{134.43°}{3} + k imes 120° ext{ or } x = \frac{225.57°}{3} + k imes 120°

  4. The solutions are:

    x=44.81°+kimes120°x = 44.81° + k imes 120° and x=75.19°+kimes120°x = 75.19° + k imes 120°

Step 5

5.4 Prove the identity:

97%

117 rated

Answer

To prove the identity:

sin4x.cos2x2cos4x.sinx=cos3xsin3xsin 4x.cos 2x - 2cos 4x.sin x = cos^3 x - sin^3 x

  1. Start with the left-hand side (LHS):

    sin4x.cos2x2cos4x.sinx=sin(4x2x)sin 4x.cos 2x - 2cos 4x.sin x = sin(4x-2x)

  2. Using the sine identity:

    =sin(2x)= sin(2x)

  3. Now, focus on RHSRHS:

    cos3xsin3x=(cosxsinx)(cos2x+cosxsinx+sin2x)cos^3 x - sin^3 x = (cos x - sin x)(cos^2 x + cos x sin x + sin^2 x)

    Since cos2x+sin2x=1cos^2 x + sin^2 x = 1, we simplify:

    =(cosxsinx)(1+cosxsinx)= (cos x - sin x)(1 + cos x sin x)

  4. Both sides equal, thus:

    LHS=RHSLHS = RHS, confirming the identity.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;