SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home NSC Mathematics Trigonometry 5.1 Simplify the expression to a single trigonometric term:
tan(-x)cosxsin(-x-180°)-1
5.2 Given: cos 35° = m
Without using a calculator, determine the value of EACH of the following in terms of m:
5.2.1 cos 215°
5.2.2 sin 20°
5.3 Determine the general solution of:
cos 4x.cos x + sin 4x.sin x = -0.7
5.4 Prove the identity:
sin 4x.cos 2x - 2cos 4x.sin x.cos x
tan 2x = cos^3 x - sin^3 x
5.1 Simplify the expression to a single trigonometric term:
tan(-x)cosxsin(-x-180°)-1
5.2 Given: cos 35° = m
Without using a calculator, determine the value of EACH of the following in terms of m:
5.2.1 cos 215°
5.2.2 sin 20°
5.3 Determine the general solution of:
cos 4x.cos x + sin 4x.sin x = -0.7
5.4 Prove the identity:
sin 4x.cos 2x - 2cos 4x.sin x.cos x
tan 2x = cos^3 x - sin^3 x - NSC Mathematics - Question 5 - 2021 - Paper 2 Question 5
View full question 5.1 Simplify the expression to a single trigonometric term:
tan(-x)cosxsin(-x-180°)-1
5.2 Given: cos 35° = m
Without using a calculator, determine the value of EA... show full transcript
View marking scheme Worked Solution & Example Answer:5.1 Simplify the expression to a single trigonometric term:
tan(-x)cosxsin(-x-180°)-1
5.2 Given: cos 35° = m
Without using a calculator, determine the value of EACH of the following in terms of m:
5.2.1 cos 215°
5.2.2 sin 20°
5.3 Determine the general solution of:
cos 4x.cos x + sin 4x.sin x = -0.7
5.4 Prove the identity:
sin 4x.cos 2x - 2cos 4x.sin x.cos x
tan 2x = cos^3 x - sin^3 x - NSC Mathematics - Question 5 - 2021 - Paper 2
Simplify the expression to a single trigonometric term: Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To simplify the expression t a n ( − x ) c o s x s i n ( − x − 180 ° ) − 1 tan(-x)cosxsin(-x-180°)-1 t an ( − x ) cos x s in ( − x − 180° ) − 1 , we begin by applying the properties of trigonometric functions.
Recall that t a n ( − x ) = − t a n ( x ) tan(-x) = -tan(x) t an ( − x ) = − t an ( x ) and s i n ( − x ) = − s i n ( x ) sin(-x) = -sin(x) s in ( − x ) = − s in ( x ) :
Thus,
e x t t a n ( − x ) c o s x s i n ( − x − 180 ° ) − 1 = − t a n ( x ) c o s x ( − s i n ( x ) ) − 1 ext{tan}(-x)cosxsin(-x-180°)-1 = -tan(x)cosx(-sin(x)) - 1 e x t t an ( − x ) cos x s in ( − x − 180° ) − 1 = − t an ( x ) cos x ( − s in ( x )) − 1
The sine function changes sign as follows:
− t a n ( x ) c o s x ( − s i n ( x ) ) − 1 = t a n ( x ) c o s x s i n ( x ) − 1 -tan(x)cosx(-sin(x)) - 1 = tan(x)cosxsin(x) - 1 − t an ( x ) cos x ( − s in ( x )) − 1 = t an ( x ) cos x s in ( x ) − 1
Now, using the identity t a n ( x ) = s i n ( x ) c o s ( x ) tan(x) = \frac{sin(x)}{cos(x)} t an ( x ) = cos ( x ) s in ( x ) , substitute:
= s i n ( x ) c o s ( x ) c o s x s i n ( x ) − 1 = \frac{sin(x)}{cos(x)}cosxsin(x) - 1 = cos ( x ) s in ( x ) cos x s in ( x ) − 1
This simplifies to:
= s i n 2 ( x ) − 1 = sin^2(x) - 1 = s i n 2 ( x ) − 1
Using the Pythagorean identity, s i n 2 ( x ) + c o s 2 ( x ) = 1 sin^2(x) + cos^2(x) = 1 s i n 2 ( x ) + co s 2 ( x ) = 1 , we find:
= − c o s 2 ( x ) = -cos^2(x) = − co s 2 ( x )
5.2.1 cos 215° Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find c o s ( 215 ° ) cos(215°) cos ( 215° ) , we can use the reduction formula:
Rewrite 215 ° 215° 215° as 180 ° + 35 ° 180° + 35° 180° + 35° .
Therefore,
c o s ( 215 ° ) = − c o s ( 35 ° ) = − m cos(215°) = -cos(35°) = -m cos ( 215° ) = − cos ( 35° ) = − m
5.2.2 sin 20° Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To compute s i n ( 20 ° ) sin(20°) s in ( 20° ) in terms of m m m :
Use the co-function identity, which gives s i n ( 20 ° ) = c o s ( 70 ° ) sin(20°) = cos(70°) s in ( 20° ) = cos ( 70° ) .
Rewrite 70 ° 70° 70° as 90 ° − 20 ° 90° - 20° 90° − 20° :
s i n ( 20 ° ) = c o s ( 35 ° + 35 ° ) sin(20°) = cos(35° + 35°) s in ( 20° ) = cos ( 35° + 35° )
Using the double angle formulas, we expand:
= 2 c o s ( 35 ° ) s i n ( 35 ° ) = 2 m e x t s q r t 1 − m 2 = 2cos(35°)sin(35°) = 2m ext{sqrt{1-m^2}} = 2 cos ( 35° ) s in ( 35° ) = 2 m e x t s q r t 1 − m 2
5.3 Determine the general solution of: Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To solve the equation
c o s 4 x . c o s x + s i n 4 x . s i n x = − 0.7 cos 4x.cos x + sin 4x.sin x = -0.7 cos 4 x . cos x + s in 4 x . s in x = − 0.7
Express the left side using the cosine identity:
c o s ( 4 x − x ) = c o s ( 3 x ) = − 0.7 cos(4x - x) = cos(3x) = -0.7 cos ( 4 x − x ) = cos ( 3 x ) = − 0.7
Finding the angles for 3 x 3x 3 x :
3 x = 180 ° + 45.57 ° + k i m e s 360 ° e x t o r 3 x = 180 ° − 45.57 ° + k i m e s 360 ° 3x = 180° + 45.57° + k imes 360° ext{ or } 3x = 180° - 45.57° + k imes 360° 3 x = 180° + 45.57° + kim es 360° e x t or 3 x = 180° − 45.57° + kim es 360°
This simplifies to two cases:
Case 1:
3 x = 134.43 ° + k i m e s 360 ° e x t o r 3 x = 225.57 ° + k i m e s 360 ° 3x = 134.43° + k imes 360° ext{ or } 3x = 225.57° + k imes 360° 3 x = 134.43° + kim es 360° e x t or 3 x = 225.57° + kim es 360°
Thus,
x = 134.43 ° 3 + k i m e s 120 ° e x t o r x = 225.57 ° 3 + k i m e s 120 ° x = \frac{134.43°}{3} + k imes 120° ext{ or } x = \frac{225.57°}{3} + k imes 120° x = 3 134.43° + kim es 120° e x t or x = 3 225.57° + kim es 120°
The solutions are:
x = 44.81 ° + k i m e s 120 ° x = 44.81° + k imes 120° x = 44.81° + kim es 120° and x = 75.19 ° + k i m e s 120 ° x = 75.19° + k imes 120° x = 75.19° + kim es 120°
5.4 Prove the identity: Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To prove the identity:
s i n 4 x . c o s 2 x − 2 c o s 4 x . s i n x = c o s 3 x − s i n 3 x sin 4x.cos 2x - 2cos 4x.sin x = cos^3 x - sin^3 x s in 4 x . cos 2 x − 2 cos 4 x . s in x = co s 3 x − s i n 3 x
Start with the left-hand side (LHS):
s i n 4 x . c o s 2 x − 2 c o s 4 x . s i n x = s i n ( 4 x − 2 x ) sin 4x.cos 2x - 2cos 4x.sin x = sin(4x-2x) s in 4 x . cos 2 x − 2 cos 4 x . s in x = s in ( 4 x − 2 x )
Using the sine identity:
= s i n ( 2 x ) = sin(2x) = s in ( 2 x )
Now, focus on R H S RHS R H S :
c o s 3 x − s i n 3 x = ( c o s x − s i n x ) ( c o s 2 x + c o s x s i n x + s i n 2 x ) cos^3 x - sin^3 x = (cos x - sin x)(cos^2 x + cos x sin x + sin^2 x) co s 3 x − s i n 3 x = ( cos x − s in x ) ( co s 2 x + cos x s in x + s i n 2 x )
Since c o s 2 x + s i n 2 x = 1 cos^2 x + sin^2 x = 1 co s 2 x + s i n 2 x = 1 , we simplify:
= ( c o s x − s i n x ) ( 1 + c o s x s i n x ) = (cos x - sin x)(1 + cos x sin x) = ( cos x − s in x ) ( 1 + cos x s in x )
Both sides equal, thus:
L H S = R H S LHS = RHS L H S = R H S , confirming the identity.
Join the NSC students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved