In die diagram is P(-5 ; 12) en T lê op die positiewe x-as - NSC Mathematics - Question 6 - 2020 - Paper 2
Question 6
In die diagram is P(-5 ; 12) en T lê op die positiewe x-as. PŌT = θ.
Beantwoord die volgende vrae sonder om 'n sakrekenaar te gebruik.
6.1.1 Skryf die waarde van t... show full transcript
Worked Solution & Example Answer:In die diagram is P(-5 ; 12) en T lê op die positiewe x-as - NSC Mathematics - Question 6 - 2020 - Paper 2
Step 1
6.1.1 Skryf die waarde van tan(θ) neer.
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Given the coordinates of point P(-5, 12), we can calculate the value of tan(θ) using the formula:
tan(θ)=adjacentopposite=−512=−512
Thus, the value of tan(θ) is (tan(θ) = -\frac{12}{5}).
Step 2
6.1.2 Bereken die waarde van cos(θ).
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To calculate cos(θ), we use the Pythagorean theorem to find the hypotenuse (OP):
OP=(−5)2+122=25+144=169=13
Now, using the definition of cosine:
cos(θ)=hypotenuseadjacent=13−5
So, the value of cos(θ) is (cos(θ) = -\frac{5}{13}).
Step 3
6.1.3 S(a ; b) is 'n punt in die derde kwadrant sodat TŌS = 0 + 90°. Bepaal die waarde van b.
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
In the third quadrant, both sine and cosine are negative. Given TŌS = 0 + 90°, we know:
cos(90°+θ)=−sin(θ)
Using the cosine identity:
cos(θ)=6.5a
We have 5 as a known adjacent value, leading to:
b=(6.5)2−(5)2=42.25−25=17.25=−6.5b
Thus, the value of b will be derived accordingly.