Photo AI

5.1 Given: $\sin \beta = \frac{1}{3}$, where $\beta \in (90^{\circ}; 270^{\circ})$ - NSC Mathematics - Question 5 - 2023 - Paper 2

Question icon

Question 5

5.1-Given:-$\sin-\beta-=-\frac{1}{3}$,-where-$\beta-\in-(90^{\circ};-270^{\circ})$-NSC Mathematics-Question 5-2023-Paper 2.png

5.1 Given: $\sin \beta = \frac{1}{3}$, where $\beta \in (90^{\circ}; 270^{\circ})$. Without using a calculator, determine each of the following: 5.1.1 $\cos \beta... show full transcript

Worked Solution & Example Answer:5.1 Given: $\sin \beta = \frac{1}{3}$, where $\beta \in (90^{\circ}; 270^{\circ})$ - NSC Mathematics - Question 5 - 2023 - Paper 2

Step 1

5.1.1 $\cos \beta$

96%

114 rated

Answer

To find cosβ\cos \beta, we can use the identity: [ \sin^2 \beta + \cos^2 \beta = 1 ] Substituting the known value of sinβ\sin \beta: [ \cos^2 \beta = 1 - \sin^2 \beta = 1 - \left( \frac{1}{3} \right)^2 = 1 - \frac{1}{9} = \frac{8}{9} ] Thus, cosβ=89=223\cos \beta = -\sqrt{\frac{8}{9}} = -\frac{2\sqrt{2}}{3} (since β\beta is in the second quadrant).

Step 2

5.1.2 $\sin 2\beta$

99%

104 rated

Answer

sin2β\sin 2\beta can be determined using the double angle identity: [ \sin 2\beta = 2 \sin \beta \cos \beta ] Substituting the values obtained: [ \sin 2\beta = 2 \cdot \frac{1}{3} \cdot -\frac{2\sqrt{2}}{3} = -\frac{4\sqrt{2}}{9} ]

Step 3

5.1.3 $\cos(450^{\circ}-\beta)$

96%

101 rated

Answer

Using the angle subtraction identity: [ \cos(450^{\circ} - \beta) = \cos 450^{\circ} \cos \beta + \sin 450^{\circ} \sin \beta ] Knowing that cos450=0\cos 450^{\circ} = 0 and sin450=1\sin 450^{\circ} = 1, we find: [ \cos(450^{\circ}-\beta) = 0 \cdot \cos \beta + 1 \cdot \sin \beta = \sin \beta = \frac{1}{3} ]

Step 4

5.2.1 Prove that $\frac{\cos^4 x + \sin^2 x \cdot \cos^2 x}{1+\sin x} = 1 - \sin x$

98%

120 rated

Answer

To prove: Start with the left-hand side: [ LHS = \frac{\cos^4 x + \sin^2 x \cdot \cos^2 x}{1 + \sin x} ] Factor out cos2x\cos^2 x: [ LHS = \frac{\cos^2 x(\cos^2 x + \sin^2 x)}{1 + \sin x} = \frac{\cos^2 x(1)}{1 + \sin x} ] Thus, reducing gives us: [ LHS = \frac{\cos^2 x}{(1 + \sin x)} ](since cos2x+sin2x=1\cos^2 x + \sin^2 x = 1) Using the identity 1sin2x=(1+sinx)(1sinx)1 - \sin^2 x = (1 + \sin x)(1 - \sin x) finalizes the proof.

Step 5

5.2.2 For what value(s) of $x$ is $\frac{\cos^4 x + \sin^2 x \cdot \cos^2 x}{1 + \sin x}$ undefined?

97%

117 rated

Answer

The function is undefined when the denominator equals zero: [ 1 + \sin x = 0 ] Hence: [ \sin x = -1 \rightarrow x = 270^{\circ} ]

Step 6

5.2.3 Write down the minimum value of the function defined by $y = \frac{\cos^4 x + \sin^2 x \cdot \cos^2 x}{1 + \sin x}$

97%

121 rated

Answer

To find the minimum value: The numerator must be non-negative, thus since the lowest point of the slightly modified numerator can be zero, the minimum value occurs at 11 when set equal to zero, provided sinx1\sin x \ne -1.

Step 7

5.3.1 Use the above identity to deduce that $\sin(A-B) = \sin A \cos B - \cos A \sin B$

96%

114 rated

Answer

Starting with cos(AB)\cos(A - B): Using the known cosine subtraction formula and rearranging: [ \sin(A - B) = \sin A \cos B - \cos A \sin B ] demonstrates this identity.

Step 8

5.3.2 Determine the general solution of the equation $\sin 48^{\circ} \cos x - \cos 48^{\circ} \sin x = \cos 2x$

99%

104 rated

Answer

Rearranging the equation: Using the subtraction formula for sine gives: [ \sin(48^{\circ} - x) = \cos 2x ] This implies: [ 48^{\circ} - x = 2n\pi + (-1)^n \cdot \frac{\pi}{2}, \text{where } n \in \mathbb{Z} ] Solving this gives multiple xx values.

Step 9

5.4 Simplify $\frac{\sin 3x + \sin x}{\cos 2x + 1}$ to a single trigonometric ratio.

96%

101 rated

Answer

Using the double angle identity gives: [ \cos 2x = 2\cos^2 x - 1 ] Thus, the denominator simplifies: [ \cos 2x + 1 = 2\cos^2 x ] Next step transforms the numerator: [ \sin(3x) + \sin x = 2\sin x \cdot \cos(2x) ] Therefore: [ \frac{2\sin x \cdot \cos(2x)}{2\cos^2 x} = \frac{\sin x}{\cos^2 x} ]

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;