Photo AI

5.1 Vereenvoudig (SONDER DIE GEBRUIK VAN 'n SAKREKENAAR) sin(180° - x) - NSC Mathematics - Question 5 - 2016 - Paper 2

Question icon

Question 5

5.1-Vereenvoudig-(SONDER-DIE-GEBRUIK-VAN-'n-SAKREKENAAR)--sin(180°---x)-NSC Mathematics-Question 5-2016-Paper 2.png

5.1 Vereenvoudig (SONDER DIE GEBRUIK VAN 'n SAKREKENAAR) sin(180° - x) . cos(x - 360°) . tan(180° + x) . cos(-x) tan(-x) . cos(90° - x) . sin(90° - x) 5.2 Bewys di... show full transcript

Worked Solution & Example Answer:5.1 Vereenvoudig (SONDER DIE GEBRUIK VAN 'n SAKREKENAAR) sin(180° - x) - NSC Mathematics - Question 5 - 2016 - Paper 2

Step 1

5.1 Vereenvoudig (SONDER DIE GEBRUIK VAN 'n SAKREKENAAR)

96%

114 rated

Answer

To simplify the expression, we start with:

sin(180° - x) \. cos(x - 360°) \. tan(180° + x) \. cos(-x) \. tan(-x) \. cos(90° - x) \. sin(90° - x)

Using the trigonometric identities, we can express each part:

  • ( sin(180° - x) = sin x )
  • ( cos(x - 360°) = cos x )
  • ( tan(180° + x) = tan x )
  • ( cos(-x) = cos x )
  • ( tan(-x) = -tan x )
  • ( cos(90° - x) = sin x )
  • ( sin(90° - x) = cos x )

This yields:

sinxcosxtanxcosx(tanx)sinxcosxsin x \cdot cos x \cdot tan x \cdot cos x \cdot (-tan x) \cdot sin x \cdot cos x

Simplifying further gives:

=cosx= -cos x

Step 2

5.2 Bewys die identiteit:

99%

104 rated

Answer

To prove the identity, we examine the left-hand side (LHS):

LHS=sinx1+cosx+1+cosxsinxLHS = \frac{sin x}{1 + cos x} + \frac{1 + cos x}{sin x}

Combining the fractions:

=sin2x+(1+cosx)(1+cosx)sinx(1+cosx)= \frac{sin^2 x + (1 + cos x)(1 + cos x)}{sin x(1 + cos x)}

This simplifies to:

=sin2x+2cosx+cos2xsinx(1+cosx)= \frac{sin^2 x + 2cos x + cos^2 x}{sin x(1 + cos x)}

Using the Pythagorean identity ( sin^2 x + cos^2 x = 1 ), we find:

=1+2cosxsinx(1+cosx) =2sinx= \frac{1 + 2cos x}{sin x(1 + cos x)}\ = \frac{2}{sin x}

This verifies the identity.

Step 3

5.3 Gebruik saamgestelde hoeke om aan te toon dat:

96%

101 rated

Answer

To prove:

2cos2x=2cos2x12 cos 2x = 2 cos^2 x - 1

We can utilize the double angle identity for cosine:

cos 2x = 2cos^2 x - 1\ $$(Thus,\ 2cos 2x = 2(2cos^2 x - 1) = 2cos^2 x - 1)$$

Step 4

5.4 Bepaal die algemene oplossing vir x as:

98%

120 rated

Answer

Given:

cos 2x + 3 sin 2x = 2\

Rearranging gives:

cos 2x = 2 - 3 sin 2x\

Using the double angle identity and solve:

This leads to using inverse functions to find possible solutions.

Step 5

5.5 In AABC: A + B = 90° . Bepaal die waarde van sin A . cos B = sin( A + B)

97%

117 rated

Answer

Since ( A + B = 90° ), we can utilize the co-function identity:

sin A = cos B \rightarrow sin A \cdot cos B = sin(90°) = 1$$

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;