In die diagram is die grafieke van $ f(x) = 2 ext{sin}(2x) $ en $ g(x) = - ext{cos}(x + 45^{ ext{o}}) $ vir die interval $ x ext{ e } [0^{ ext{o}}; 180^{ ext{o}}] $ gesketst - NSC Mathematics - Question 6 - 2023 - Paper 2
Question 6
In die diagram is die grafieke van $ f(x) = 2 ext{sin}(2x) $ en $ g(x) = - ext{cos}(x + 45^{ ext{o}}) $ vir die interval $ x ext{ e } [0^{ ext{o}}; 180^{ ext{o}}] $... show full transcript
Worked Solution & Example Answer:In die diagram is die grafieke van $ f(x) = 2 ext{sin}(2x) $ en $ g(x) = - ext{cos}(x + 45^{ ext{o}}) $ vir die interval $ x ext{ e } [0^{ ext{o}}; 180^{ ext{o}}] $ gesketst - NSC Mathematics - Question 6 - 2023 - Paper 2
Step 1
Skryf die periode van $ f $ neer.
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die periode van f(x)=2extsin(2x) is 180exto.
Step 2
Bepaal die waardeverzameling van $ g $ in die interval $ x ext{ e } [0^{ ext{o}}; 180^{ ext{o}}] $.
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Om die waardeverzameling van g(x)=−extcos(x+45exto) te bepaal, moet ons die maksimum en minimum waardes vind. Gegewe dat extcos waardes tussen -1 en 1 wissel, is die waardeverzameling van g:
g(x)exte[−1;1]extdusg(x)exte[−1;2].
Step 3
Bepaal die waardes van $ x $, in die interval $ x ext{ e } [0^{ ext{o}}; 180^{ ext{o}}] $, waarvoor:
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Step 4
f(x) \times g(x) > 0
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die produk f(x)×g(x)>0 wanneer albei funksies positiewe of negatiewe waardes het. Dit kan geanaliseer word deur die tekens van f en g te bepaal in die interval [0exto;180exto].
f(x)>0 wanneer xexte[0exto;90exto].
g(x)>0 wanneer x+45extoexte[90exto;270exto], of xexte[45exto;225exto].
Dus, xexte[45exto;90exto].
Step 5
f(x) + 1 > 0
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Om te bepaal wanneer f(x)+1>0, evalueer ons die uitdrukking:
2extsin(2x)+1>02extsin(2x)>−1extsin(2x)>−0.5
Hieruit volg dat 2xexte[30exto;150exto] en 210exto;330exto.
Dus, xexte[15exto;75exto] of [105exto;165exto].
Step 6
Bepaal die waarde(s) van $ k $ in die interval $ x ext{ e } [0^{ ext{o}}; 180^{ ext{o}}] $.
97%
121 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Gegewe dat p(x)=−f(x), moet ons die punte waar dit gelyk is aan −1 bepaal. Dit beteken f(x)=1.