Photo AI

In die diagram is B, E en D punte in dieselfde horisontale vlak - NSC Mathematics - Question 7 - 2017 - Paper 2

Question icon

Question 7

In-die-diagram-is-B,-E-en-D-punte-in-dieselfde-horisontale-vlak-NSC Mathematics-Question 7-2017-Paper 2.png

In die diagram is B, E en D punte in dieselfde horisontale vlak. AB en CD is vertikale pale. Staalkabels AE en CE anker die pale by E. 'n Ander staalkabel verbind A ... show full transcript

Worked Solution & Example Answer:In die diagram is B, E en D punte in dieselfde horisontale vlak - NSC Mathematics - Question 7 - 2017 - Paper 2

Step 1

Hoogte van paal CD

96%

114 rated

Answer

To find the height of pole CD, we can use the sine function based on the triangle CED.

Using the following formula:

extsin(27°)=CDCE ext{sin}(27°) = \frac{CD}{CE}

We substitute the known values:

CD=CEextsin(27°)=8.6extsin(27°)CD = CE \cdot ext{sin}(27°) = 8.6 \cdot ext{sin}(27°)

Calculating this gives:

CD3.90mCD \approx 3.90 m

Step 2

Lengte van kabel AE

99%

104 rated

Answer

To find the length of cable AE, we can use the cosine function as follows:

extcos(40°)=10AE ext{cos}(40°) = \frac{10}{AE}

Rearranging gives:

AE=10extcos(40°)AE = \frac{10}{ ext{cos}(40°)}

Calculating this results in:

AE13.05mAE \approx 13.05 m

Step 3

Lengte van kabel AC

96%

101 rated

Answer

To find the length of cable AC, we will utilize the cosine rule in triangle AEC:

AC2=CE2+AE22CEAEextcos(70°)AC^2 = CE^2 + AE^2 - 2\cdot CE\cdot AE\cdot ext{cos}(70°)

Substituting in our values:

AC2=(8.6)2+(13.05)22(8.6)(13.05)extcos(70°)AC^2 = (8.6)^2 + (13.05)^2 - 2\cdot (8.6)(13.05)\cdot ext{cos}(70°)

Calculating the components gives:

AC2167.49AC^2 \approx 167.49

Taking the square root provides:

AC12.94mAC \approx 12.94 m

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;