Photo AI

7.1 Four forces of are acting on the same point, as shown in FIGURE 7.1 below - NSC Mechanical Technology Fitting and Machining - Question 7 - 2018 - Paper 1

Question icon

Question 7

7.1-Four-forces-of-are-acting-on-the-same-point,-as-shown-in-FIGURE-7.1-below-NSC Mechanical Technology Fitting and Machining-Question 7-2018-Paper 1.png

7.1 Four forces of are acting on the same point, as shown in FIGURE 7.1 below. Determine, by means of calculations, the magnitude and direction of the resultant of t... show full transcript

Worked Solution & Example Answer:7.1 Four forces of are acting on the same point, as shown in FIGURE 7.1 below - NSC Mechanical Technology Fitting and Machining - Question 7 - 2018 - Paper 1

Step 1

7.1 Resultant Calculation

96%

114 rated

Answer

To determine the resultant of the forces, we will first calculate the horizontal and vertical components of each force:

  1. Calculate Horizontal Components:

    • For the 300 N force at 40°:
      • 300cos(40)229.81300 \cos(40^{\circ}) \approx 229.81 N
    • For the 200 N force at 100°:
      • 200cos(100)153.21-200 \cos(100^{\circ}) \approx -153.21 N
    • For the 400 N force (horizontal):
      • 400400 N
    • For the 100 N force at 120°:
      • 100cos(60)50-100 \cos(60^{\circ}) \approx -50 N

    Summing these components gives: ΣH=400+229.81153.2150426.60 N\Sigma H = 400 + 229.81 - 153.21 - 50 \approx 426.60 \text{ N}

  2. Calculate Vertical Components:

    • For the 300 N force at 40°:
      • 300sin(40)192.84300 \sin(40^{\circ}) \approx 192.84 N
    • For the 200 N force at 100°:
      • 200sin(100)128.56-200 \sin(100^{\circ}) \approx -128.56 N
    • For the 400 N force (vertical):
      • 200200 N
    • For the 100 N force at 120°:
      • 100sin(60)86.60-100 \sin(60^{\circ}) \approx -86.60 N

    Summing these components gives: ΣV=192.84128.56+20086.60234.80 N\Sigma V = 192.84 - 128.56 + 200 - 86.60 \approx 234.80 \text{ N}

  3. Calculate the Magnitude of the Resultant: Using the Pythagorean theorem: R=(426.60)2+(234.80)2486.95 NR = \sqrt{(426.60)^2 + (234.80)^2} \approx 486.95 \text{ N}

  4. Determine the Direction: The angle ( \phi ) can be calculated using: tan(ϕ)=ΣVΣH    ϕ=tan1(234.80426.60)28.83 North from East.\tan(\phi) = \frac{\Sigma V}{\Sigma H} \implies \phi = \tan^{-1}\left(\frac{234.80}{426.60}\right) \approx 28.83^{\circ} \text{ North from East}.

Step 2

7.2.1 Stress in the Bar

99%

104 rated

Answer

To calculate the stress in the bar, use the formula:

Stress=ForceArea\text{Stress} = \frac{\text{Force}}{\text{Area}}

  1. Calculate the Area (A) of the cross-section:

    • Outer diameter = 62 mm, Inner diameter = 50 mm: A=π4×(D2d2)=π4×(622502)1.06×102 m2A = \frac{\pi}{4} \times (D^2 - d^2) = \frac{\pi}{4} \times (62^2 - 50^2) \approx 1.06 \times 10^{-2} \text{ m}^2
  2. Calculate the Stress: Stress=80×103N1.06×102m275.47×106Pa=75.47MPa\text{Stress} = \frac{80 \times 10^3 \, \text{N}}{1.06 \times 10^{-2} \, \text{m}^2} \approx 75.47 \times 10^{6} \, \text{Pa} = 75.47 \, \text{MPa}

Step 3

7.2.2 Strain

96%

101 rated

Answer

Strain is defined as:

Strain=ΔLL0\text{Strain} = \frac{\Delta L}{L_0}

  1. Calculate the Change in Length (( \Delta L )) using: ϵ=StressE\epsilon = \frac{\text{Stress}}{E} where ( E ) is Young's modulus: ϵ=75.47×10690×1090.84×106\epsilon = \frac{75.47 \times 10^{6}}{90 \times 10^{9}} \approx 0.84 \times 10^{-6}

  2. Substituting into the Strain Formula Maximo:

    • Original length ( L_0 = 100 , ext{mm} ): ΔL=ϵ×L0=0.84×106×100extmm=0.084extmm\Delta L = \epsilon \times L_0 = 0.84 \times 10^{-6} \times 100 \, ext{mm} = 0.084 \, ext{mm}

Step 4

7.3 Moments about B

98%

120 rated

Answer

To find the reactions at supports A and B, we will take moments about one support and then use equilibrium conditions:

  1. Calculate Moments about B: ΣMB=0\Sigma M_B = 0 (550×8)2+(640×4)+(300×0)(RA×8)=0\frac{(550 \times 8)}{2} + (640 \times 4) + (300 \times 0) - (R_A \times 8) = 0

    • This gives: RA=(550×4)+(640×2)8435NR_A = \frac{(550 \times 4) + (640 \times 2)}{8} \approx 435 \, \text{N}
  2. Calculate Moments about A: ΣMA=0\Sigma M_A = 0 (300×16)+(640×12)+(550×8)16RB=0\frac{(300 \times 16) + (640 \times 12) + (550 \times 8)}{16} - R_B = 0 Thus, RB=(550×8)+(640×4)+(300×0)161055NR_B = \frac{(550 \times 8) + (640 \times 4) + (300 \times 0)}{16} \approx 1055 \, \text{N}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;