Photo AI

7.1 Four forces of 100 N, 200 N, 300 N and 400 N respectively are acting on the same point, as shown in FIGURE 7.1 below - NSC Mechanical Technology Welding and Metalwork - Question 7 - 2017 - Paper 1

Question icon

Question 7

7.1-Four-forces-of-100-N,-200-N,-300-N-and-400-N-respectively-are-acting-on-the-same-point,-as-shown-in-FIGURE-7.1-below-NSC Mechanical Technology Welding and Metalwork-Question 7-2017-Paper 1.png

7.1 Four forces of 100 N, 200 N, 300 N and 400 N respectively are acting on the same point, as shown in FIGURE 7.1 below. Determine, by means of calculations, the ma... show full transcript

Worked Solution & Example Answer:7.1 Four forces of 100 N, 200 N, 300 N and 400 N respectively are acting on the same point, as shown in FIGURE 7.1 below - NSC Mechanical Technology Welding and Metalwork - Question 7 - 2017 - Paper 1

Step 1

7.1 Determine the Resultant Force

96%

114 rated

Answer

To find the resultant force, we need to calculate the horizontal and vertical components of the forces:

  1. Horizontal Components:

    • For 200 N:
      • 200cos(30)=173.21 N200 \cos(30^\circ) = 173.21 \text{ N}
    • For 300 N:
      • 300cos(50)=192.84 N300 \cos(50^\circ) = 192.84 \text{ N}
    • For 400 N:
      • 400cos(0)=400 N400 \cos(0^\circ) = 400 \text{ N}
    • For 100 N:
      • 100 N is vertical (no horizontal component).

    Summing up:

    • ΣH=200+173.21+192.84+400=165.05 N\Sigma H = -200 + 173.21 + 192.84 + 400 = 165.05 \text{ N}
  2. Vertical Components:

    • For 200 N:
      • 200sin(30)=100 N200 \sin(30^\circ) = 100 \text{ N}
    • For 300 N:
      • 300sin(50)=229.81 N300 \sin(50^\circ) = 229.81 \text{ N}
    • For 400 N:
      • 0 N (horizontal force).
    • For 100 N:
      • 100 N.

    Summing up:

    • ΣV=100+229.81100=229.81 N\Sigma V = 100 + 229.81 - 100 = 229.81 \text{ N}
  3. Resultant Magnitude and Angle:

    • Magnitude: R=(ΣH)2+(ΣV)2=(165.05)2+(229.81)2=278.71 NR = \sqrt{(\Sigma H)^2 + (\Sigma V)^2} = \sqrt{(165.05)^2 + (229.81)^2} = 278.71\text{ N}
    • Angle: θ=tan1(ΣVΣH)=tan1(229.81165.05)=287.71 from east\theta = \tan^{-1}\left( \frac{\Sigma V}{\Sigma H} \right) = \tan^{-1}\left( \frac{229.81}{165.05} \right) = 287.71^\circ \text{ from east}

Step 2

7.2.1 Stress in the bar

99%

104 rated

Answer

To calculate stress, we use the formula: σ=FA\sigma = \frac{F}{A} where:

  • F=40 kN=40×103 NF = 40 \text{ kN} = 40 \times 10^3 \text{ N}
  • A=π×d24=π×(0.056)24=2.46×103 m2A = \frac{\pi \times d^2}{4} = \frac{\pi \times (0.056)^2}{4} = 2.46 \times 10^{-3} \text{ m}^2.

Thus, the stress is: σ=40×1032.46×103=16.26×106 Pa\sigma = \frac{40 \times 10^3}{2.46 \times 10^{-3}} = 16.26 \times 10^6 \text{ Pa}

Step 3

7.2.2 Strain

96%

101 rated

Answer

Strain (ϵ\epsilon) is calculated as: ϵ=σE\epsilon = \frac{\sigma}{E} where:

  • σ=16.26×106 Pa\sigma = 16.26 \times 10^6 \text{ Pa}
  • Young's modulus, E=90 GPa=90×109 PaE = 90 \text{ GPa} = 90 \times 10^9 \text{ Pa}.

Therefore, strain is: ϵ=16.26×10690×109=0.18×103\epsilon = \frac{16.26 \times 10^6}{90 \times 10^9} = 0.18 \times 10^{-3}

Step 4

7.2.3 Change in length

98%

120 rated

Answer

The change in length (ΔL\Delta L) can be calculated using: ΔL=ϵ×L0\Delta L = \epsilon \times L_0 where:

  • L0=0.85 mL_0 = 0.85 \text{ m}.

Thus, the change in length is: ΔL=(0.18×103)×0.85=0.15 mm\Delta L = (0.18 \times 10^{-3}) \times 0.85 = 0.15 \text{ mm}

Step 5

7.3 Calculate Reactions in Supports A and B

97%

117 rated

Answer

To find the reactions at supports A and B:

  1. Moments about B:

    • Setting the sum of moments about B to zero: ΣMB=(A×12)(960×6)(750×6)=0\Sigma M_B = (A \times 12) - (960 \times 6) - (750 \times 6) = 0
    • Solve for A: A=5760+600012=980 NA = \frac{5760 + 6000}{12} = 980 \text{ N}
  2. Moments about A:

    • Setting the sum of moments about A to zero: ΣMA=(B×12)(750×4)(960×6)(300×12)=0\Sigma M_A = (B \times 12) - (750 \times 4) - (960 \times 6) - (300 \times 12) = 0
    • Solve for B: B=750×4+960×6+300×1212=1030 NB = \frac{750 \times 4 + 960 \times 6 + 300 \times 12}{12} = 1030 \text{ N}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;