Photo AI

FIGURE 11.1 below shows a square-to-square hopper (off-centre) - NSC Mechanical Technology Welding and Metalwork - Question 11 - 2023 - Paper 1

Question icon

Question 11

FIGURE-11.1-below-shows-a-square-to-square-hopper-(off-centre)-NSC Mechanical Technology Welding and Metalwork-Question 11-2023-Paper 1.png

FIGURE 11.1 below shows a square-to-square hopper (off-centre). Calculate the true length of the following: 11.1.1 A–2 11.1.2 B–3 11.1.3 C–4 FIGURE 11.2 below s... show full transcript

Worked Solution & Example Answer:FIGURE 11.1 below shows a square-to-square hopper (off-centre) - NSC Mechanical Technology Welding and Metalwork - Question 11 - 2023 - Paper 1

Step 1

A–2

96%

114 rated

Answer

To find the true length A–2, we will use the Pythagorean theorem to calculate the diagonal distance.

Given:

  • Vertical height = 400 mm
  • Horizontal displacements from point A to D and C respectively.

The length A–2 can be calculated as:

A2=sqrt(1802+3502+4002)A–2 = \\sqrt{(180^2 + 350^2 + 400^2)}

Calculating the values:

A2=sqrt32400+122500+160000approx561.16mmA–2 = \\sqrt{32400 + 122500 + 160000} \\approx 561.16 \, \text{mm}

Step 2

B–3

99%

104 rated

Answer

For the true length B–3, again we apply the Pythagorean theorem:

Given:

  • Vertical height = 400 mm

The length B–3 can be derived as:

B3=sqrt(4102+1502+4002)B–3 = \\sqrt{(410^2 + 150^2 + 400^2)}

Calculating the values:

B3=sqrt68100+22500+160000approx592.11mmB–3 = \\sqrt{68100 + 22500 + 160000} \\approx 592.11 \, \text{mm}

Step 3

C–4

96%

101 rated

Answer

To find the length C–4, we again use the Pythagorean theorem:

The length C–4 can be expressed as:

C4=sqrt(3802+902+4002)C–4 = \\sqrt{(380^2 + 90^2 + 400^2)}

Calculating:

C4=sqrt14400+8100+160000approx559.02mmC–4 = \\sqrt{14400 + 8100 + 160000} \\approx 559.02 \, \text{mm}

Step 4

5–6

98%

120 rated

Answer

To calculate the true length 5–6:

We use the formula:

56=π×D125–6 = \frac{\pi \times D}{12}

Given:

  • D = 500 mm

So:

56=π×50012130.90mm5–6 = \frac{\pi \times 500}{12} \approx 130.90 \, \text{mm}

Step 5

3–6

97%

117 rated

Answer

Next, for the true length 3–6:

This length can be derived using:

36=3×D123–6 = \frac{3 \times D}{12}

Calculating:

Given the diameter D = 500 mm,

36=3×50012392.70mm3–6 = \frac{3 \times 500}{12} \approx 392.70 \, \text{mm}

Step 6

B–6

97%

121 rated

Answer

Finally, the true length B–6:

Using the formula:

B6=(3002+5002+4002)B–6 = \sqrt{(300^2 + 500^2 + 400^2)}

Calculating:

B6=90000+250000+160000502.49mmB–6 = \sqrt{90000 + 250000 + 160000} \approx 502.49 \, \text{mm}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;