Photo AI

FIGURE 7.1 below shows a beam supported by two vertical supports, RL and RR - NSC Mechanical Technology Welding and Metalwork - Question 7 - 2024 - Paper 1

Question icon

Question 7

FIGURE-7.1-below-shows-a-beam-supported-by-two-vertical-supports,-RL-and-RR-NSC Mechanical Technology Welding and Metalwork-Question 7-2024-Paper 1.png

FIGURE 7.1 below shows a beam supported by two vertical supports, RL and RR. Two vertical point loads, 15 N and 25 N, are exerted onto the beam. A uniformly distribu... show full transcript

Worked Solution & Example Answer:FIGURE 7.1 below shows a beam supported by two vertical supports, RL and RR - NSC Mechanical Technology Welding and Metalwork - Question 7 - 2024 - Paper 1

Step 1

7.1.1 The magnitude of the point load representing the UDL

96%

114 rated

Answer

To find the magnitude of the uniformly distributed load (UDL), we multiply the load intensity by the length over which it acts:

extUDL=10extN/mimes3extm=30extN ext{UDL} = 10 ext{ N/m} imes 3 ext{ m} = 30 ext{ N}

Thus, the magnitude of the UDL is 30 N.

Step 2

7.1.2 The reactions at RL and RR

99%

104 rated

Answer

To find the reactions at the supports, we take moments about each support:

  1. For RL (taking moments about RR):

    extRLimes10=(25extNimes8)+(30imes3.5)+(15extNimes6.5) ext{RL} imes 10 = (25 ext{ N} imes 8) + (30 imes 3.5) + (15 ext{ N} imes 6.5)

    Solving gives:

    extRL=36.5extN ext{RL} = 36.5 ext{ N}
  2. For RR (taking moments about RL):

    extRRimes10=(15extNimes2)+(30imes3)+(25extNimes4) ext{RR} imes 10 = (15 ext{ N} imes 2) + (30 imes 3) + (25 ext{ N} imes 4)

    Resulting in:

    extRR=33.5extN ext{RR} = 33.5 ext{ N}

Thus, the reactions are RL = 36.5 N and RR = 33.5 N.

Step 3

7.1.3 The shear forces at A, B and C on the beam

96%

101 rated

Answer

To determine the shear forces at points A, B, and C:

  1. At A:

    SF=36.5extNext(upward)S_F = 36.5 ext{ N} ext{ (upward)}
  2. At B:

    SF=36.5extN15extN30extN=8.5extNext(downward)S_F = 36.5 ext{ N} - 15 ext{ N} - 30 ext{ N} = -8.5 ext{ N} ext{ (downward)}
  3. At C:

    SF=36.5extN15extN30extN25extN=33.5extNext(downward)S_F = 36.5 ext{ N} - 15 ext{ N} - 30 ext{ N} - 25 ext{ N} = -33.5 ext{ N} ext{ (downward)}

Thus, the shear forces are:

  • At A: 36.5 N (upward)
  • At B: -8.5 N (downward)
  • At C: -33.5 N (downward).

Step 4

7.1.4 Draw the shear force diagram

98%

120 rated

Answer

To draw the shear force diagram:

  1. Use a scale where 1 N = 1 mm.
  2. Start at point A with a value of 36.5 mm (up).
  3. At point B, drop down to -8.5 mm (indicating a downward shear force).
  4. Finally, at point C, go down to -33.5 mm.

Ensure to mark the points A, B, and C clearly and use horizontal lines between points for constant shear forces.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;