Photo AI

7.1 Four pulling forces of 100 N, 200 N, 300 N and 185 N are acting from the same acting point, as shown in FIGURE 7.1 - NSC Mechanical Technology Welding and Metalwork - Question 7 - 2016 - Paper 1

Question icon

Question 7

7.1-Four-pulling-forces-of-100-N,-200-N,-300-N-and-185-N-are-acting-from-the-same-acting-point,-as-shown-in-FIGURE-7.1-NSC Mechanical Technology Welding and Metalwork-Question 7-2016-Paper 1.png

7.1 Four pulling forces of 100 N, 200 N, 300 N and 185 N are acting from the same acting point, as shown in FIGURE 7.1. Determine, by means of calculations, the magn... show full transcript

Worked Solution & Example Answer:7.1 Four pulling forces of 100 N, 200 N, 300 N and 185 N are acting from the same acting point, as shown in FIGURE 7.1 - NSC Mechanical Technology Welding and Metalwork - Question 7 - 2016 - Paper 1

Step 1

Determine the resultant of the forces in FIGURE 7.1

96%

114 rated

Answer

To find the resultant force from the pulling forces, we will break each force into its horizontal (H) and vertical (V) components:

  • For the 100 N force, the components are:

    • FH1=100extNimes0=0extNF_{H1} = 100 ext{ N} imes 0 = 0 ext{ N} (horizontal)
    • FV1=100extNimes(1)=100extNF_{V1} = 100 ext{ N} imes (-1) = -100 ext{ N} (vertical)
  • For the 200 N force:

    • FH2=200extNimesextcos(25exto)F_{H2} = 200 ext{ N} imes ext{cos}(25^ ext{o})
    • FV2=200extNimesextsin(25exto)F_{V2} = 200 ext{ N} imes ext{sin}(25^ ext{o})
  • For the 300 N force:

    • FH3=300extNimesextcos(45exto)F_{H3} = 300 ext{ N} imes ext{cos}(45^ ext{o})
    • FV3=300extNimesextsin(45exto)F_{V3} = 300 ext{ N} imes ext{sin}(45^ ext{o})
  • For the 185 N force (acting horizontally to the right):

    • FH4=185extNF_{H4} = 185 ext{ N}
    • FV4=0extNF_{V4} = 0 ext{ N}

Now add up the horizontal and vertical components:

ΣH=FH1+FH2+FH3+FH4=0+200cos(25exto)+300cos(45exto)+185\Sigma H = F_{H1} + F_{H2} + F_{H3} + F_{H4} = 0 + 200 \cos(25^ ext{o}) + 300 \cos(45^ ext{o}) + 185

ΣV=FV1+FV2+FV3+FV4=100+200sin(25exto)+300sin(45exto)+0\Sigma V = F_{V1} + F_{V2} + F_{V3} + F_{V4} = -100 + 200 \sin(25^ ext{o}) + 300 \sin(45^ ext{o}) + 0

Calculating these values will give us the resultant vector magnitudes.

Step 2

7.2.1 Diameter of the bar

99%

104 rated

Answer

First, use the relationship between stress, force, and area: σ=FA\sigma = \frac{F}{A} Where:

  • σ=20 MPa=20×106 Pa\sigma = 20 \text{ MPa} = 20 \times 10^6 \text{ Pa}
  • F=40 kN=40×103 NF = 40 \text{ kN} = 40 \times 10^3 \text{ N}

We can rearrange for area: A=Fσ=40×10320×106=2×103 m2A = \frac{F}{\sigma} = \frac{40 \times 10^3}{20 \times 10^6} = 2 \times 10^{-3} \text{ m}^2

Using the area of a circle formula: A=πD24A = \frac{\pi D^2}{4} Rearranging for diameter: D=2Aπ=22×103π=0.05046 m50.46 mmD = 2 \sqrt{\frac{A}{\pi}} = 2 \sqrt{\frac{2 \times 10^{-3}}{\pi}} = 0.05046 \text{ m} \approx 50.46 \text{ mm}

Step 3

7.2.2 Strain

96%

101 rated

Answer

Strain (ϵ\epsilon) is calculated using: ϵ=σE\epsilon = \frac{\sigma}{E} Where:

  • σ=20×106 Pa\sigma = 20 \times 10^6 \text{ Pa}
  • E=90 GPa=90×109 PaE = 90 \text{ GPa} = 90 \times 10^9 \text{ Pa}

Substituting values gives: ϵ=20×10690×109=0.22×103\epsilon = \frac{20 \times 10^6}{90 \times 10^9} = 0.22 \times 10^{-3}

Step 4

7.2.3 Change in length

98%

120 rated

Answer

The change in length (Δl\Delta l) can be calculated using: Δl=ϵl0\Delta l = \epsilon \cdot l_0 Where:

  • ϵ=0.22×103\epsilon = 0.22 \times 10^{-3}
  • l0=0.3 ml_0 = 0.3 \text{ m}

Then: Δl=(0.22×103)0.3=0.07×103extm=0.07extmm\Delta l = (0.22 \times 10^{-3}) \cdot 0.3 = 0.07 \times 10^{-3} ext{ m} = 0.07 ext{ mm}

Step 5

7.3 Moments about A and B

97%

117 rated

Answer

To calculate the reactions at supports A and B, we can start by applying the moment equilibrium equations.

  1. Calculate the moments about point B: ΣMB=0=550×2+300×6RA×8 \Sigma M_B = 0 = 550 \times 2 + 300 \times 6 - R_A \times 8 Which rearranges to find RAR_A.

  2. Then calculate the upward forces and set them equal to the downward forces: RA+RB=550+300R_A + R_B = 550 + 300

  3. Solve these equations simultaneously to find the values of RAR_A and RBR_B.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;