Photo AI

7.1 In an experiment to verify the relationship between the electrostatic force, $F_e$, and distance, $r$, between two identical, positively charged spheres, the graph below was obtained - NSC Physical Sciences - Question 7 - 2016 - Paper 1

Question icon

Question 7

7.1-In-an-experiment-to-verify-the-relationship-between-the-electrostatic-force,-$F_e$,-and-distance,-$r$,-between-two-identical,-positively-charged-spheres,-the-graph-below-was-obtained-NSC Physical Sciences-Question 7-2016-Paper 1.png

7.1 In an experiment to verify the relationship between the electrostatic force, $F_e$, and distance, $r$, between two identical, positively charged spheres, the gra... show full transcript

Worked Solution & Example Answer:7.1 In an experiment to verify the relationship between the electrostatic force, $F_e$, and distance, $r$, between two identical, positively charged spheres, the graph below was obtained - NSC Physical Sciences - Question 7 - 2016 - Paper 1

Step 1

State Coulomb's law in words.

96%

114 rated

Answer

Coulomb's law states that the magnitude of the electrostatic force between two point charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.

Step 2

Write down the dependent variable of the experiment.

99%

104 rated

Answer

The dependent variable of the experiment is the electrostatic force, FeF_e.

Step 3

What relationship between the electrostatic force $F_e$ and the square of the distance, $r^2$, between the charged spheres can be deduced from the graph?

96%

101 rated

Answer

The graph indicates that the electrostatic force FeF_e is inversely proportional to the square of the distance, meaning that as the distance increases, the force decreases.

Step 4

Use the information in the graph to calculate the charge on each sphere.

98%

120 rated

Answer

From the graph, the slope is calculated as rac{\Delta F_e}{\Delta (\frac{1}{r^2})} = 4.82 \times 10^3 \text{ N m}^{2}/\text{C}^{2}. Using Coulomb's law, Fe=kQ2r2F_e = k \frac{Q^2}{r^2}, where k=8.9875×109 N m2/C2k = 8.9875 \times 10^9 \text{ N m}^{2}/\text{C}^{2}, we can deduce:

Q2=extslope×r2Q^2 = ext{slope} \times r^2 Since rr is represented in meters, we can pick a value for rr and calculate QQ, yielding Q=7.32×107 CQ = 7.32 \times 10^{-7} \text{ C}.

Step 5

Draw a diagram showing the electric field lines surrounding sphere A.

97%

117 rated

Answer

The diagram should depict the electric field lines radiating outward from sphere AA, indicating its positive charge.

Step 6

Calculate the magnitude of the net electric field at point P.

97%

121 rated

Answer

The electric field due to sphere AA at point PP is given by: EA=kQAr2E_A = \frac{k |Q_A|}{r^2} Substituting the values: EA=8.99×109×0.75×106(0.09)2=8.33×106 N/CE_A = \frac{8.99 \times 10^9 \times 0.75 \times 10^{-6}}{(0.09)^2} = 8.33 \times 10^6 \text{ N/C}
For sphere BB: EB=kQB(d+d)2E_B = \frac{k |Q_B|}{(d + d')^2}
Thus: EB=8.99×109×0.8×1060.122=6.25×106 N/CE_B = \frac{8.99 \times 10^9 \times 0.8 \times 10^{-6}}{0.12^2} = 6.25 \times 10^6 \text{ N/C}
The direction of EBE_B is towards sphere BB, so: Enet=EAEB=8.33×1066.25×106=2.08×106 N/CE_{net} = E_A - E_B = 8.33 \times 10^6 - 6.25 \times 10^6 = 2.08 \times 10^6 \text{ N/C}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;