Photo AI

Bepaal $f'(x)$ met gebruik van EERSTE BEGINSELS as $f(x) = 5 + x$ (5) Bepaal: 6.2.1 $\frac{dy}{dx}$ as $y = x(x + 9)$ (3) 6.2.2 $D_x[\sqrt{x + \pi p^3}]$ (3) 6.2.3 $f'(x)$ as $f(x) = \frac{1 - x}{x^2}$ (4) Gegee $g(x) = -4x^2$ Bepaal: g(2) (1) 6.3.2 Die vergelyking van die raaklyn aan $g$ by 'n punt waar $x = 2$ (4) - NSC Technical Mathematics - Question 6 - 2022 - Paper 1

Question icon

Question 6

Bepaal--$f'(x)$-met-gebruik-van-EERSTE-BEGINSELS-as-$f(x)-=-5-+-x$-(5)--Bepaal:--6.2.1-$\frac{dy}{dx}$-as-$y-=-x(x-+-9)$-(3)--6.2.2-$D_x[\sqrt{x-+-\pi-p^3}]$-(3)--6.2.3-$f'(x)$-as-$f(x)-=-\frac{1---x}{x^2}$-(4)--Gegee-$g(x)-=--4x^2$--Bepaal:--g(2)-(1)--6.3.2-Die-vergelyking-van-die-raaklyn-aan-$g$-by-'n-punt-waar-$x-=-2$-(4)-NSC Technical Mathematics-Question 6-2022-Paper 1.png

Bepaal $f'(x)$ met gebruik van EERSTE BEGINSELS as $f(x) = 5 + x$ (5) Bepaal: 6.2.1 $\frac{dy}{dx}$ as $y = x(x + 9)$ (3) 6.2.2 $D_x[\sqrt{x + \pi p^3}]$ (3) 6.... show full transcript

Worked Solution & Example Answer:Bepaal $f'(x)$ met gebruik van EERSTE BEGINSELS as $f(x) = 5 + x$ (5) Bepaal: 6.2.1 $\frac{dy}{dx}$ as $y = x(x + 9)$ (3) 6.2.2 $D_x[\sqrt{x + \pi p^3}]$ (3) 6.2.3 $f'(x)$ as $f(x) = \frac{1 - x}{x^2}$ (4) Gegee $g(x) = -4x^2$ Bepaal: g(2) (1) 6.3.2 Die vergelyking van die raaklyn aan $g$ by 'n punt waar $x = 2$ (4) - NSC Technical Mathematics - Question 6 - 2022 - Paper 1

Step 1

Bepaal $f'(x)$ met gebruik van EERSTE BEGINSELS as $f(x) = 5 + x$

96%

114 rated

Answer

To determine the derivative using first principles, we use the formula:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

Substituting in the function:

f(x)=limh0(5+(x+h))(5+x)hf'(x) = \lim_{h \to 0} \frac{(5 + (x + h)) - (5 + x)}{h}

This simplifies to:

f(x)=limh0hh=limh01=1f'(x) = \lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} 1 = 1

Thus, f(x)=1f'(x) = 1.

Step 2

Bepaal: 6.2.1 $\frac{dy}{dx}$ as $y = x(x + 9)$

99%

104 rated

Answer

To find the derivative, we need to apply the product rule:

y=x(x+9)y = x(x + 9)

Applying the product rule:

dydx=1(x+9)+x1=x+9+x=2x+9\frac{dy}{dx} = 1 \cdot (x + 9) + x \cdot 1 = x + 9 + x = 2x + 9

Step 3

Bepaal: 6.2.2 $D_x[\sqrt{x + \pi p^3}]$

96%

101 rated

Answer

Using differentiation rules for composite functions, we apply the chain rule:

Let u=x+πp3u = x + \pi p^3, then:

Dx[u]=12ududxD_x[\sqrt{u}] = \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx}

Where:

dudx=1\frac{du}{dx} = 1

Thus,

Dx[x+πp3]=12x+πp3D_x[\sqrt{x + \pi p^3}] = \frac{1}{2\sqrt{x + \pi p^3}}

Step 4

Bepaal: 6.2.3 $f'(x)$ as $f(x) = \frac{1 - x}{x^2}$

98%

120 rated

Answer

To calculate the derivative, we utilize the quotient rule:

f(x)=(x2(1))(1x)(2x)(x2)2f'(x) = \frac{(x^2 \cdot (-1)) - (1 - x)(2x)}{(x^2)^2}

Expanding gives:

f(x)=x22x(1x)x4=x22x+2x2x4=x22xx4=x(x2)x4f'(x) = \frac{-x^2 - 2x(1 - x)}{x^4} = \frac{-x^2 - 2x + 2x^2}{x^4} = \frac{x^2 - 2x}{x^4} = \frac{x(x - 2)}{x^4}

Step 5

Bepaal: g(2)

97%

117 rated

Answer

To find g(2)g(2), we substitute x=2x = 2 into the function:

g(2)=4(22)=4(4)=16g(2) = -4(2^2) = -4(4) = -16

Step 6

Bepaal: 6.3.2 Die vergelyking van die raaklyn aan $g$ by 'n punt waar $x = 2$

97%

121 rated

Answer

First, we find the derivative of g(x)g(x):

g(x)=8xg'(x) = -8x

At x=2x = 2:

g(2)=8(2)=16g'(2) = -8(2) = -16

Using the point-slope form of the equation of a line:

yg(2)=g(2)(x2)y - g(2) = g'(2)(x - 2)

We know g(2)=16g(2) = -16 and g(2)=16g'(2) = -16:

y(16)=16(x2)y - (-16) = -16(x - 2)

Thus, rearranging gives:

ightarrow y = -16x + 16$$

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;