9.1 Bepaal die volgende integrale:
9.1.1 $\, \int (10x + 6) \, dx$
9.1.2 $\, \int (x^2 + 2) - 2x^3 \, dx$
9.2 Die skets hieronder verteenwoordig die geareaerde oppervlakte begrens deur die kurwe van die funksie gedefinieer deur $f(x) = \frac{3}{x} - 4$; $x > 0$ en die x-as tussen die punte waar $x = 2$ en $x = 4$ - NSC Technical Mathematics - Question 9 - 2022 - Paper 1
Question 9
9.1 Bepaal die volgende integrale:
9.1.1 $\, \int (10x + 6) \, dx$
9.1.2 $\, \int (x^2 + 2) - 2x^3 \, dx$
9.2 Die skets hieronder verteenwoordig die geareaerde op... show full transcript
Worked Solution & Example Answer:9.1 Bepaal die volgende integrale:
9.1.1 $\, \int (10x + 6) \, dx$
9.1.2 $\, \int (x^2 + 2) - 2x^3 \, dx$
9.2 Die skets hieronder verteenwoordig die geareaerde oppervlakte begrens deur die kurwe van die funksie gedefinieer deur $f(x) = \frac{3}{x} - 4$; $x > 0$ en die x-as tussen die punte waar $x = 2$ en $x = 4$ - NSC Technical Mathematics - Question 9 - 2022 - Paper 1
Step 1
9.1.1 $\, \int (10x + 6) \, dx$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve the integral, we apply the power rule:
∫(10x+6)dx=10⋅2x2+6x+C=5x2+6x+C
Step 2
9.1.2 $\, \int (x^2 + 2) - 2x^3 \, dx$
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
For this integral, we can also apply the power rule:
∫(x2+2−2x3)dx=3x3+2x−42x4+C=3x3+2x−2x4+C
Step 3
9.2 Bepaal (toon ALLE berekening) die geareaerde oppervlakte
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the shaded area between the curve and the x-axis from x=2 to x=4, we compute: