Photo AI

9.1 Bepaal die volgende integrale: 9.1.1 $\, \int (10x + 6) \, dx$ 9.1.2 $\, \int (x^2 + 2) - 2x^3 \, dx$ 9.2 Die skets hieronder verteenwoordig die geareaerde oppervlakte begrens deur die kurwe van die funksie gedefinieer deur $f(x) = \frac{3}{x} - 4$; $x > 0$ en die x-as tussen die punte waar $x = 2$ en $x = 4$ - NSC Technical Mathematics - Question 9 - 2022 - Paper 1

Question icon

Question 9

9.1-Bepaal-die-volgende-integrale:--9.1.1-$\,-\int-(10x-+-6)-\,-dx$--9.1.2-$\,-\int-(x^2-+-2)---2x^3-\,-dx$--9.2-Die-skets-hieronder-verteenwoordig-die-geareaerde-oppervlakte-begrens-deur-die-kurwe-van-die-funksie-gedefinieer-deur-$f(x)-=-\frac{3}{x}---4$;-$x->-0$-en-die-x-as-tussen-die-punte-waar-$x-=-2$-en-$x-=-4$-NSC Technical Mathematics-Question 9-2022-Paper 1.png

9.1 Bepaal die volgende integrale: 9.1.1 $\, \int (10x + 6) \, dx$ 9.1.2 $\, \int (x^2 + 2) - 2x^3 \, dx$ 9.2 Die skets hieronder verteenwoordig die geareaerde op... show full transcript

Worked Solution & Example Answer:9.1 Bepaal die volgende integrale: 9.1.1 $\, \int (10x + 6) \, dx$ 9.1.2 $\, \int (x^2 + 2) - 2x^3 \, dx$ 9.2 Die skets hieronder verteenwoordig die geareaerde oppervlakte begrens deur die kurwe van die funksie gedefinieer deur $f(x) = \frac{3}{x} - 4$; $x > 0$ en die x-as tussen die punte waar $x = 2$ en $x = 4$ - NSC Technical Mathematics - Question 9 - 2022 - Paper 1

Step 1

9.1.1 $\, \int (10x + 6) \, dx$

96%

114 rated

Answer

To solve the integral, we apply the power rule:

(10x+6)dx=10x22+6x+C=5x2+6x+C\int (10x + 6) \, dx = 10 \cdot \frac{x^{2}}{2} + 6x + C = 5x^2 + 6x + C

Step 2

9.1.2 $\, \int (x^2 + 2) - 2x^3 \, dx$

99%

104 rated

Answer

For this integral, we can also apply the power rule:

(x2+22x3)dx=x33+2x2x44+C=x33+2xx42+C\int (x^2 + 2 - 2x^3) \, dx = \frac{x^3}{3} + 2x - \frac{2x^4}{4} + C = \frac{x^3}{3} + 2x - \frac{x^4}{2} + C

Step 3

9.2 Bepaal (toon ALLE berekening) die geareaerde oppervlakte

96%

101 rated

Answer

To find the shaded area between the curve and the x-axis from x=2x = 2 to x=4x = 4, we compute:

A=24(3x4)dxA = \int_{2}^{4} \left(\frac{3}{x} - 4\right) \, dx

Evaluating the integral gives:

A=[3lnx4x]24=[3ln(4)4(4)][3ln(2)4(2)]A = [3 \ln x - 4x]_{2}^{4} = [3 \ln(4) - 4(4)] - [3 \ln(2) - 4(2)]

Computing this results in:

A5.92 square unitsA \approx 5.92 \text{ square units}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;