Photo AI

3.1 Vereenvoudig: $(-2 \\sqrt{a})^8$ $=(2^8)(a)^{\frac{4}{3}}$ $=256a^8$ 3.2 Los op vir $x$: $ ext{log}_3(3x-2) + \text{log}_{0.5} = 3$ $ ext{log}_3(3x-2) = 3 - \text{log}_{0.5}$ $ ext{log}_3(3x-2) = 2^3 \\\text{(since } \text{log}_{0.5} = -1)$ $3x - 2 = 2^2$ $3x = 4 + 2$ $3x = 6$ $x = 2$ 3.3 Indien log $2 = a$ en log $3 = b$, bepaal die waarde van log $\ ext{log} \ rac{1}{\sqrt{6}}$ in terme van $a$ en $b$ - NSC Technical Mathematics - Question 3 - 2019 - Paper 1

Question icon

Question 3

3.1-Vereenvoudig:---------$(-2-\\sqrt{a})^8$----------$=(2^8)(a)^{\frac{4}{3}}$----------$=256a^8$-------3.2-Los-op-vir-$x$:----------$-ext{log}_3(3x-2)-+-\text{log}_{0.5}-=-3$----------$-ext{log}_3(3x-2)-=-3---\text{log}_{0.5}$----------$-ext{log}_3(3x-2)-=-2^3-\\\text{(since-}-\text{log}_{0.5}-=--1)$----------$3x---2-=-2^2$----------$3x-=-4-+-2$----------$3x-=-6$----------$x-=-2$-------3.3-Indien-log-$2-=-a$-en-log-$3-=-b$,-bepaal-die-waarde-van-log-$\-ext{log}-\-rac{1}{\sqrt{6}}$-in-terme-van-$a$-en-$b$-NSC Technical Mathematics-Question 3-2019-Paper 1.png

3.1 Vereenvoudig: $(-2 \\sqrt{a})^8$ $=(2^8)(a)^{\frac{4}{3}}$ $=256a^8$ 3.2 Los op vir $x$: $ ext{log}_3(3x-2) + \text{log}... show full transcript

Worked Solution & Example Answer:3.1 Vereenvoudig: $(-2 \\sqrt{a})^8$ $=(2^8)(a)^{\frac{4}{3}}$ $=256a^8$ 3.2 Los op vir $x$: $ ext{log}_3(3x-2) + \text{log}_{0.5} = 3$ $ ext{log}_3(3x-2) = 3 - \text{log}_{0.5}$ $ ext{log}_3(3x-2) = 2^3 \\\text{(since } \text{log}_{0.5} = -1)$ $3x - 2 = 2^2$ $3x = 4 + 2$ $3x = 6$ $x = 2$ 3.3 Indien log $2 = a$ en log $3 = b$, bepaal die waarde van log $\ ext{log} \ rac{1}{\sqrt{6}}$ in terme van $a$ en $b$ - NSC Technical Mathematics - Question 3 - 2019 - Paper 1

Step 1

Vereenvoudig: $(-2 \\sqrt{a})^8$

96%

114 rated

Answer

First, evaluate the power:

(2)8imes(sqrta)8=256a4(-2)^{8} imes (\\sqrt{a})^8 = 256 a^4

Thus, the result is 256a4256a^4.

Step 2

Los op vir $x$: $ ext{log}_3(3x-2) + \text{log}_{0.5} = 3$

99%

104 rated

Answer

Combine logarithmic terms.

  1. Rearrange:
    log3(3x2)=3log0.5\text{log}_3(3x-2) = 3 - \text{log}_{0.5}
    2. Substitute:
    log3(3x2)=3+1\text{log}_3(3x-2) = 3 + 1
    3. Solve for xx:
    3x2=263x - 2 = 2^6 3x=64+23x = 64 + 2 3x=663x = 66 x=22x = 22.

Step 3

Indien log $2 = a$ en log $3 = b$, bepaal die waarde van log $\ ext{log} \ rac{1}{\sqrt{6}}$ in terme van $a$ en $b$.

96%

101 rated

Answer

  1. Express in terms of base:
    log6=12log(6)\log \sqrt{6} = \frac{1}{2}\log (6)
    2. Substitute the logs:
    =12(log(2)+log(3))= \frac{1}{2} (\log(2) + \log(3))
    =12(a+b)= \frac{1}{2} (a + b).

Step 4

Die spanning (V) in 'n wisselstroomkring word deur die Argand-diagram hieronder verteenwoordig.

98%

120 rated

Answer

Use the formula for voltage given in polar form:
V=r(cosθ+isinθ)V = r(cos\theta + i sin\theta)
Substitute r=2r = 2 and heta=240 heta = 240^{\circ}:
V=2(cos(240)+isin(240))V = 2(cos(240^{\circ}) + i sin(240^{\circ}))
Evaluate:
=2(12+i32)= 2(\frac{-1}{2} + i \frac{\sqrt{3}}{2})
=1+3i= -1 + \sqrt{3}i.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;