Photo AI

In die diagram hieronder lê A, B (-5; 12) en C (u; 0) op die sirkel met middelpunt O by die oorsprong - NSC Technical Mathematics - Question 2 - 2021 - Paper 1

Question icon

Question 2

In-die-diagram-hieronder-lê-A,-B-(-5;-12)-en-C-(u;-0)-op-die-sirkel-met-middelpunt-O-by-die-oorsprong-NSC Technical Mathematics-Question 2-2021-Paper 1.png

In die diagram hieronder lê A, B (-5; 12) en C (u; 0) op die sirkel met middelpunt O by die oorsprong. 'n Lyn word getrek aan deur die sirkel by B en C te sny. A is ... show full transcript

Worked Solution & Example Answer:In die diagram hieronder lê A, B (-5; 12) en C (u; 0) op die sirkel met middelpunt O by die oorsprong - NSC Technical Mathematics - Question 2 - 2021 - Paper 1

Step 1

Die vergelyking van die sirkel

96%

114 rated

Answer

The general equation of a circle centered at the origin is given by:

x2+y2=r2x^2 + y^2 = r^2

Where r is the radius. Since the point B (-5, 12) lies on the circle, we can find the radius:

r2=(5)2+(12)2=25+144=169r^2 = (-5)^2 + (12)^2 = 25 + 144 = 169

Thus, the equation of the circle is:

x2+y2=169x^2 + y^2 = 169

Step 2

Die numeriese waarde van t

99%

104 rated

Answer

From the equation of the circle:

t = rac{y}{x}

At point B (–5, 12), substituting the y and x values gives:

t = rac{12}{-5} = - rac{12}{5}

Step 3

Die vergelyking van die raaksyn aan die sirkel by B in die formaat y = ...

96%

101 rated

Answer

To find the equation of the tangent line at point B (-5, 12), we first need the gradient (m) using the derived radius:

m_{OB} = rac{y_2 - y_1}{x_2 - x_1} = rac{12 - 0}{-5 - 0} = rac{12}{-5} = - rac{12}{5}

The tangent line has a slope that is the negative reciprocal, thus:

m_{tangent} = rac{5}{12}

Using the point-slope form of the line equation:

yy1=m(xx1)y - y_1 = m(x - x_1)

Substituting B (-5, 12):

y - 12 = rac{5}{12}(x + 5)

Simplifying gives:

y = rac{5}{12}x + rac{25}{12} + 12 = rac{5}{12}x + rac{169}{12}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;