Photo AI

Bepaal die volgende integrale: 9.1.1 ∫ 3x' dx 9.1.2 ∫ (4 + 2x') dx 9.1.3 ∫ (8x* - x^2) / (2x) dx 9.2 Die skets hieronder toon die gearesterde oppervlakte begrens deur die funksie h gedefinieer deur h(x) = -x^2 + 2x + 8 en die x-as tussen die punte waar x = 2 en x = 4 - NSC Technical Mathematics - Question 9 - 2022 - Paper 1

Question icon

Question 9

Bepaal-die-volgende-integrale:--9.1.1-∫-3x'-dx--9.1.2-∫-(4-+-2x')-dx--9.1.3-∫-(8x*---x^2)-/-(2x)-dx--9.2-Die-skets-hieronder-toon-die-gearesterde-oppervlakte-begrens-deur-die-funksie-h-gedefinieer-deur-h(x)-=--x^2-+-2x-+-8-en-die-x-as-tussen-die-punte-waar-x-=-2-en-x-=-4-NSC Technical Mathematics-Question 9-2022-Paper 1.png

Bepaal die volgende integrale: 9.1.1 ∫ 3x' dx 9.1.2 ∫ (4 + 2x') dx 9.1.3 ∫ (8x* - x^2) / (2x) dx 9.2 Die skets hieronder toon die gearesterde oppervlakte begrens... show full transcript

Worked Solution & Example Answer:Bepaal die volgende integrale: 9.1.1 ∫ 3x' dx 9.1.2 ∫ (4 + 2x') dx 9.1.3 ∫ (8x* - x^2) / (2x) dx 9.2 Die skets hieronder toon die gearesterde oppervlakte begrens deur die funksie h gedefinieer deur h(x) = -x^2 + 2x + 8 en die x-as tussen die punte waar x = 2 en x = 4 - NSC Technical Mathematics - Question 9 - 2022 - Paper 1

Step 1

9.1.1 ∫ 3x' dx

96%

114 rated

Answer

To evaluate the integral of 3x3x', we apply the power rule for integration:

ext{Let } F(x) &= rac{3}{2} x^2 + C\ ext{Thus, } \ ∫ 3x' dx &= 3 \ln |x| + C\ ext{Final Answer: } & 3 \ln |x| + C \end{aligned}$$

Step 2

9.1.2 ∫ (4 + 2x') dx

99%

104 rated

Answer

To solve the integral:

∫ (4 + 2x') dx & = ∫ 4 dx + ∫ 2x' dx\ & = 4x + x^2 + C\ ext{Final Answer: } & 4x + x^2 + C\ ext{where } C ext{ is the constant of integration. }\end{aligned}$$

Step 3

9.1.3 ∫ (8x* - x^2) / (2x) dx

96%

101 rated

Answer

First simplify the integrand:

∫ rac{8x* - x^2}{2x} dx & = ∫ rac{8}{2} - rac{x^2}{2x} dx\ & = ∫ 4 - rac{x}{2} dx\ & = 4x - rac{1}{4}x^2 + C\ ext{Final Answer: } & 4x - rac{1}{4}x^2 + C\end{aligned}$$

Step 4

9.2 Die opwerklakte begrens deur die funksie h en die x-as, bereken die area

98%

120 rated

Answer

We need to compute the area under the curve defined by the function h(x) from x = 2 to x = 4.

A & = ∫_2^4 h(x) dx\ & = ∫_2^4 (-x^2 + 2x + 8) dx\ & = \left[-\frac{x^3}{3} + x^2 + 8x\right]_2^4\ & = \left[-\frac{4^3}{3} + 4^2 + 8(4)\right] - \left[-\frac{2^3}{3} + 2^2 + 8(2)\right]\ & = \left[-\frac{64}{3} + 16 + 32\right] - \left[-\frac{8}{3} + 4 + 16\right]\ & = \left[-\frac{64}{3} + 48\right] - \left[-\frac{8}{3} + 20\right]\ & = -\frac{64}{3} + \frac{144}{3} + \frac{8}{3} - \frac{60}{3}\ & = \frac{36}{3} = 12\ ext{Final Area A: } & 12 ext{ square units.}\end{aligned}$$ The learner's statement is incorrect as 20% of 36 is not equal to 12, thus there is a discrepancy.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;