Photo AI

3.1 Simplify the following without the use of a calculator: 3.1.1 \( \sqrt{8x^{27}} \) 3.1.2 \( 9^{1} \cdot 4^{1} \cdot 6^{-2n} \) 3.1.3 \( \sqrt{2 - \sqrt{-4}} - \sqrt{4k} \) 3.2 Given: \( \frac{\log 72 - \log 2}{\log 6} \) 3.2.1 Write the following as a single logarithm: \( \log 72 - \log 2 \) 3.2.2 Hence, simplify without using a calculator: \( \frac{\log 72 - \log 2}{\log 6} \) 3.3 Solve for \( x: 5x^{2} - 5x = 600 \) 3.4 Given the complex numbers: \( r_{1} = 2 + 3i \) and \( r_{2} = i \) 3.4.1 Write down the conjugate of \( r_{2} \) 3.4.2 Hence, simplify \( \frac{r_{1}}{r_{2}} \) Show ALL steps - NSC Technical Mathematics - Question 3 - 2024 - Paper 1

Question icon

Question 3

3.1-Simplify-the-following-without-the-use-of-a-calculator:--3.1.1--\(-\sqrt{8x^{27}}-\)--3.1.2--\(-9^{1}-\cdot-4^{1}-\cdot-6^{-2n}-\)--3.1.3--\(-\sqrt{2---\sqrt{-4}}---\sqrt{4k}-\)--3.2-Given:-\(-\frac{\log-72---\log-2}{\log-6}-\)--3.2.1-Write-the-following-as-a-single-logarithm:-\(-\log-72---\log-2-\)--3.2.2-Hence,-simplify-without-using-a-calculator:-\(-\frac{\log-72---\log-2}{\log-6}-\)--3.3-Solve-for-\(-x:-5x^{2}---5x-=-600-\)--3.4-Given-the-complex-numbers:-\(-r_{1}-=-2-+-3i-\)-and-\(-r_{2}-=-i-\)--3.4.1-Write-down-the-conjugate-of-\(-r_{2}-\)--3.4.2-Hence,-simplify-\(-\frac{r_{1}}{r_{2}}-\)-Show-ALL-steps-NSC Technical Mathematics-Question 3-2024-Paper 1.png

3.1 Simplify the following without the use of a calculator: 3.1.1 \( \sqrt{8x^{27}} \) 3.1.2 \( 9^{1} \cdot 4^{1} \cdot 6^{-2n} \) 3.1.3 \( \sqrt{2 - \sqrt{-4}... show full transcript

Worked Solution & Example Answer:3.1 Simplify the following without the use of a calculator: 3.1.1 \( \sqrt{8x^{27}} \) 3.1.2 \( 9^{1} \cdot 4^{1} \cdot 6^{-2n} \) 3.1.3 \( \sqrt{2 - \sqrt{-4}} - \sqrt{4k} \) 3.2 Given: \( \frac{\log 72 - \log 2}{\log 6} \) 3.2.1 Write the following as a single logarithm: \( \log 72 - \log 2 \) 3.2.2 Hence, simplify without using a calculator: \( \frac{\log 72 - \log 2}{\log 6} \) 3.3 Solve for \( x: 5x^{2} - 5x = 600 \) 3.4 Given the complex numbers: \( r_{1} = 2 + 3i \) and \( r_{2} = i \) 3.4.1 Write down the conjugate of \( r_{2} \) 3.4.2 Hence, simplify \( \frac{r_{1}}{r_{2}} \) Show ALL steps - NSC Technical Mathematics - Question 3 - 2024 - Paper 1

Step 1

3.1.1 \( \sqrt{8x^{27}} \)

96%

114 rated

Answer

To simplify ( \sqrt{8x^{27}} ), we recognize that ( 8 = 2^3 ). Thus, we have:

8x27=23x27=23x27=23/2x27/2=22x13.5=22x13x\sqrt{8x^{27}} = \sqrt{2^3 \cdot x^{27}} = \sqrt{2^3} \cdot \sqrt{x^{27}} = 2^{3/2} \cdot x^{27/2} = 2 \sqrt{2} \cdot x^{13.5} = 2 \sqrt{2} x^{13} \cdot \sqrt{x}

Step 2

3.1.2 \( 9^{1} \cdot 4^{1} \cdot 6^{-2n} \)

99%

104 rated

Answer

To simplify ( 9^{1} \cdot 4^{1} \cdot 6^{-2n} ), we use the prime factorization and properties of exponents:

( 9 = 3^{2}, ) ( 4 = 2^{2}, ) ( 6 = 2 \cdot 3. )

Thus: 914162n=3222(23)2n=322222n32n 9^{1} \cdot 4^{1} \cdot 6^{-2n} = 3^{2} \cdot 2^{2} \cdot (2 \cdot 3)^{-2n} \quad = 3^{2} \cdot 2^{2} \cdot 2^{-2n} \cdot 3^{-2n}

Combining terms yields: =322n222n= 3^{2 - 2n} \cdot 2^{2 - 2n}

Step 3

3.1.3 \( \sqrt{2 - \sqrt{-4}} - \sqrt{4k} \)

96%

101 rated

Answer

We first simplify ( \sqrt{2 - \sqrt{-4}} ). Since ( \sqrt{-4} = 2i ), we have:

( 2 - \sqrt{-4} = 2 - 2i. ) Using the expression in polar form, we find: 22i can be solved using polar coordinates.\sqrt{2 - 2i} \text{ can be solved using polar coordinates.}

Next, we simplify ( \sqrt{4k} ) to ( 2\sqrt{k} ). Thus:

Final form is ( \sqrt{2 - 2i} - 2\sqrt{k} ).

Step 4

3.2.1 \( \log 72 - \log 2 \)

98%

120 rated

Answer

To write ( \log 72 - \log 2 ) as a single logarithm, apply the logarithmic property that states ( \log a - \log b = \log \left( \frac{a}{b} \right) ). Therefore:

log72log2=log(722)=log36.\log 72 - \log 2 = \log \left( \frac{72}{2} \right) = \log 36.

Step 5

3.2.2 Hence, simplify without using a calculator: \( \frac{\log 72 - \log 2}{\log 6} \)

97%

117 rated

Answer

Using the result from step 3.2.1:

We can substitute to find:

log36log6=log636=2.(since 36=62)\frac{\log 36}{\log 6} = \log_{6} 36 = 2. \quad \text{(since } 36 = 6^{2})

Step 6

3.3 Solve for \( x: 5x^{2} - 5x = 600 \)

97%

121 rated

Answer

To solve the equation, first rearrange: 5x25x600=0.5x^{2} - 5x - 600 = 0.

We can divide through by 5: x2x120=0.x^{2} - x - 120 = 0.

Now, use the quadratic formula: x=b±b24ac2a=(1)±(1)241(120)21x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-120)}}{2 \cdot 1}

Simplifying further, =1±1+4802=1±4812= \frac{1 \pm \sqrt{1 + 480}}{2} = \frac{1 \pm \sqrt{481}}{2}

Step 7

3.4.1 Write down the conjugate of \( r_{2} \)

96%

114 rated

Answer

The conjugate of a complex number ( r = a + bi ) is ( a - bi ). Thus, the conjugate of ( r_{2} = i ) is given by:

Conjugate of r2=i.\text{Conjugate of } r_{2} = -i.

Step 8

3.4.2 Hence, simplify \( \frac{r_{1}}{r_{2}} \) Show ALL steps.

99%

104 rated

Answer

Given ( r_{1} = 2 + 3i ) and ( r_{2} = i ), we have:

r1r2=2+3ii.\frac{r_{1}}{r_{2}} = \frac{2 + 3i}{i}.

To simplify, multiply the numerator and the denominator by the conjugate of the denominator:

=(2+3i)(i)i(i)=2i3(1)1=2i+3.= \frac{(2 + 3i)(-i)}{i \cdot (-i)} = \frac{-2i - 3(-1)}{-1} = 2i + 3.

Thus, the simplified expression is: r1r2=3+2i.\frac{r_{1}}{r_{2}} = 3 + 2i.

Step 9

3.5 Write down the numerical values of \( a \) and \( b \) if \( a + bi = -i -14 \)

96%

101 rated

Answer

To express ( a + bi = -i -14 ) in standard form, we find:

Equating real and imaginary parts, we find: ( a = -14 ) and ( b = -1. )

Thus the values are:

( a = -14, b = -1. )

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;