Photo AI

Given: $$ f(x) = 11 + 7x $$ Determine $f' (x)$ using FIRST PRINCIPLES: --- 6.2 Determine: 6.2.1 $$ \frac{dy}{dx} $$ if $$ y = x^* $$ 6.2.2 $$ f' (x) $$ if $$ f(x)=\sqrt{x} $$ 6.2.3 $$ D_{x} \left[ \frac{x^2 - 16}{4 - x} \right] $$ --- 6.3 Determine the average gradient of the function defined by $$ g(x) = \frac{9}{x} $$ between $$ x = -3 $$ and $$ x = -1 $$ --- Given: $$ f(x) = mx + m - 4 $$ 6.4.1 Determine $$ f' (x) $$ in terms of $$ m $$ 6.4.2 Hence, calculate $$ f' (2) $$ in terms of $$ m $$ 6.4.3 Determine the numerical value of $$ m $$ if the gradient of the tangent to $$ f $$ at $$ x = 2 $$ is equal to 39. - NSC Technical Mathematics - Question 6 - 2024 - Paper 1

Question icon

Question 6

Given:---$$-f(x)-=-11-+-7x-$$--Determine-$f'-(x)$-using-FIRST-PRINCIPLES:-------6.2-Determine:--6.2.1-$$-\frac{dy}{dx}-$$-if-$$-y-=-x^*-$$---6.2.2-$$-f'-(x)-$$-if-$$-f(x)=\sqrt{x}-$$---6.2.3-$$-D_{x}-\left[-\frac{x^2---16}{4---x}-\right]-$$--------6.3-Determine-the-average-gradient-of-the-function-defined-by-$$-g(x)-=-\frac{9}{x}-$$-between-$$-x-=--3-$$-and-$$-x-=--1-$$--------Given:--$$-f(x)-=-mx-+-m---4-$$---6.4.1-Determine-$$-f'-(x)-$$-in-terms-of-$$-m-$$---6.4.2-Hence,-calculate-$$-f'-(2)-$$-in-terms-of-$$-m-$$---6.4.3-Determine-the-numerical-value-of-$$-m-$$-if-the-gradient-of-the-tangent-to-$$-f-$$-at-$$-x-=-2-$$-is-equal-to-39.-NSC Technical Mathematics-Question 6-2024-Paper 1.png

Given: $$ f(x) = 11 + 7x $$ Determine $f' (x)$ using FIRST PRINCIPLES: --- 6.2 Determine: 6.2.1 $$ \frac{dy}{dx} $$ if $$ y = x^* $$ 6.2.2 $$ f' (x) $$ if $$... show full transcript

Worked Solution & Example Answer:Given: $$ f(x) = 11 + 7x $$ Determine $f' (x)$ using FIRST PRINCIPLES: --- 6.2 Determine: 6.2.1 $$ \frac{dy}{dx} $$ if $$ y = x^* $$ 6.2.2 $$ f' (x) $$ if $$ f(x)=\sqrt{x} $$ 6.2.3 $$ D_{x} \left[ \frac{x^2 - 16}{4 - x} \right] $$ --- 6.3 Determine the average gradient of the function defined by $$ g(x) = \frac{9}{x} $$ between $$ x = -3 $$ and $$ x = -1 $$ --- Given: $$ f(x) = mx + m - 4 $$ 6.4.1 Determine $$ f' (x) $$ in terms of $$ m $$ 6.4.2 Hence, calculate $$ f' (2) $$ in terms of $$ m $$ 6.4.3 Determine the numerical value of $$ m $$ if the gradient of the tangent to $$ f $$ at $$ x = 2 $$ is equal to 39. - NSC Technical Mathematics - Question 6 - 2024 - Paper 1

Step 1

Determine $f' (x)$ using FIRST PRINCIPLES

96%

114 rated

Answer

To find the derivative using first principles, we utilize the limit definition:
f(x)=limh0f(x+h)f(x)hf' (x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
Substituting for f(x)f(x), we have: f(x)=limh0(11+7(x+h))(11+7x)hf'(x) = \lim_{h \to 0} \frac{(11 + 7(x + h)) - (11 + 7x)}{h}
This simplifies to: f(x)=limh07hh=7.f'(x) = \lim_{h \to 0} \frac{7h}{h} = 7.
Thus, f(x)=7f'(x) = 7.

Step 2

Determine: $\frac{dy}{dx}$ if $y = x^*$

99%

104 rated

Answer

dydx=8x7.\frac{dy}{dx} = 8x^7.

Step 3

$f' (x)$ if $f(x) = \sqrt{x}$

96%

101 rated

Answer

Using the power rule, we can write: f(x)=x1/2f(x) = x^{1/2}
Thus, f(x)=12x1/2=12x.f'(x) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}}.

Step 4

$D_{x}\left[\frac{x^2 - 16}{4 - x}\right]$

98%

120 rated

Answer

Using the quotient rule: Dx[uv]=uvuvv2.D_{x}\left[\frac{u}{v}\right] = \frac{u'v - uv'}{v^2}.
With u=x216u = x^2 - 16 and v=4xv = 4 - x, we find: u=2x,v=1u' = 2x, \quad v' = -1
Thus, Dx[x2164x]=(2x)(4x)(x216)(1)(4x)2.D_{x}\left[\frac{x^2 - 16}{4 - x}\right] = \frac{(2x)(4 - x) - (x^2 - 16)(-1)}{(4 - x)^2}.
This simplifies to: Dx[x2164x]=(2x(4x)+x216)(4x)2=1.D_{x}\left[\frac{x^2 - 16}{4 - x}\right] = \frac{(2x(4 - x) + x^2 - 16)}{(4 - x)^2} = -1.

Step 5

Determine the average gradient of the function defined by $g(x) = \frac{9}{x}$ between $x = -3$ and $x = -1$

97%

117 rated

Answer

To find the average gradient, we calculate: g(3)=3 and g(1)=9.g(-3) = -3 \text{ and } g(-1) = -9.
Thus, Av. Gradient=g(x2)g(x1)x2x1=9(3)1(3)=62=3.\text{Av. Gradient} = \frac{g(x_2) - g(x_1)}{x_2 - x_1} = \frac{-9 - (-3)}{-1 - (-3)} = \frac{-6}{2} = -3.

Step 6

Determine $f' (x)$ in terms of $m$

97%

121 rated

Answer

Given f(x)=mx+m4f(x) = mx + m - 4, we differentiate: f(x)=m.f' (x) = m.

Step 7

Hence, calculate $f' (2)$ in terms of $m$

96%

114 rated

Answer

f(2)=3m.f' (2) = 3m.

Step 8

Determine the numerical value of $m$ if the gradient of the tangent to $f$ at $x = 2$ is equal to 39.

99%

104 rated

Answer

Setting the derivative equal to 39: 3m=393m = 39
Solving for mm gives: m=13.m = 13.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;