Photo AI

Determine $f'(x)$ using FIRST PRINCIPLES if $f(x) = -3x$ - NSC Technical Mathematics - Question 6 - 2021 - Paper 1

Question icon

Question 6

Determine--$f'(x)$-using-FIRST-PRINCIPLES-if-$f(x)-=--3x$-NSC Technical Mathematics-Question 6-2021-Paper 1.png

Determine $f'(x)$ using FIRST PRINCIPLES if $f(x) = -3x$. Determine: $6.2.1 \ D_x\left[ p^3x^2 - 7x + 10 \right]$ $6.2.2 \ dy \ dx$ if $y = \frac{x - 3x^2}{2}$. ... show full transcript

Worked Solution & Example Answer:Determine $f'(x)$ using FIRST PRINCIPLES if $f(x) = -3x$ - NSC Technical Mathematics - Question 6 - 2021 - Paper 1

Step 1

Determine $f'(x)$ using FIRST PRINCIPLES if $f(x) = -3x$

96%

114 rated

Answer

To determine the derivative using first principles, we apply the definition:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

Substituting for f(x)f(x):

=limh03(x+h)(3x)h=limh03x3h+3xh=limh to03hh=limh to03=3= \lim_{h \to 0} \frac{-3(x+h) - (-3x)}{h} = \lim_{h \to 0} \frac{-3x - 3h + 3x}{h} = \lim_{h \ to 0} \frac{-3h}{h} = \lim_{h \ to 0} -3 = -3

Thus, f(x)=3f'(x) = -3.

Step 2

Determine: $6.2.1 \ D_x\left[ p^3x^2 - 7x + 10 \right]$

99%

104 rated

Answer

To find the first derivative, apply the power rule:

Dx[p3x27x+10]=2p3x7D_x [p^3x^2 - 7x + 10] = 2p^3x - 7

Step 3

Determine: $6.2.2 \ dy \ dx$ if $y = \frac{x - 3x^2}{2}$

96%

101 rated

Answer

First, differentiate with respect to xx:

y=x3x22y = \frac{x - 3x^2}{2}

dy dx=16x2dy \ dx = \frac{1 - 6x}{2}

Step 4

Determine: $6.2.3 \ f'(x)$ if $f(x) = \sqrt{x} + 5x^4$

98%

120 rated

Answer

To differentiate f(x)f(x), use the power rule and the derivative of square root:

f(x)=12x+20x3f'(x) = \frac{1}{2\sqrt{x}} + 20x^3

Step 5

Determine the equation of the tangent defined by $f(x)=mx+c$ to the curve $g(x)=x^2 + 3x - 2$, is perpendicular to the line $p(x) = \frac{1}{9}x - 4$

97%

117 rated

Answer

The slope of the line p(x)p(x) is rac{1}{9}. Since the tangent is perpendicular, the slope mm can be found by:

m=9m = -9

Step 6

Determine: $6.3.2$ Hence, determine the coordinates of the point of contact of the tangent to the curve $g$

97%

121 rated

Answer

Set the derivative of g(x)g(x) equal to the slope at the tangent point:

g(x)=2x+3g'(x) = 2x + 3

Setting m=9m = -9:

2x+3=9x=62x + 3 = -9\Rightarrow x = -6

Substituting xx into g(x)g(x):

g(6)=(6)2+3(6)2=16g(-6) = (-6)^2 + 3(-6) - 2 = 16

Therefore, the point of contact is (6,16)(-6, 16).

Step 7

Determine: $6.3.3$ Determine the average gradient of $g$ between the points where $x = 3$ and $x = 2$

96%

114 rated

Answer

Calculate the average gradient using the formula:

Average gradient=g(x2)g(x1)x2x1\text{Average gradient} = \frac{g(x_2) - g(x_1)}{x_2 - x_1}

Substituting x1=2x_1 = 2 and x2=3x_2 = 3:

g(3)=16g(2)=4g(3) = 16 \quad g(2) = 4

Thus:

Average gradient=16432=12\text{Average gradient} = \frac{16 - 4}{3 - 2} = 12

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;