Photo AI

Determine $f' (x)$ using FIRST PRINCIPLES if $f (x) = 5 - 8x$ - NSC Technical Mathematics - Question 6 - 2022 - Paper 1

Question icon

Question 6

Determine-$f'-(x)$-using-FIRST-PRINCIPLES-if-$f-(x)-=-5---8x$-NSC Technical Mathematics-Question 6-2022-Paper 1.png

Determine $f' (x)$ using FIRST PRINCIPLES if $f (x) = 5 - 8x$. 6.2 Determine: 6.2.1 $f' (x)$ if $f (x) = 3x^3 + rac{ u}{ ext{x}}$ 6.2.2 $\frac{dy}{dx}$ if $y = x... show full transcript

Worked Solution & Example Answer:Determine $f' (x)$ using FIRST PRINCIPLES if $f (x) = 5 - 8x$ - NSC Technical Mathematics - Question 6 - 2022 - Paper 1

Step 1

Determine $f' (x)$ using FIRST PRINCIPLES if $f (x) = 5 - 8x$

96%

114 rated

Answer

To find the derivative f(x)f' (x) using first principles, we start with the definition of the derivative: f(x)=limh0f(x+h)f(x)hf' (x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} Substituting f(x)=58xf(x) = 5 - 8x, we have: f(x)=limh0(58(x+h))(58x)hf' (x) = \lim_{h \to 0} \frac{(5 - 8(x + h)) - (5 - 8x)}{h} This simplifies to: f(x)=limh08x8h+8xh=limh08hhf' (x) = \lim_{h \to 0} \frac{-8x - 8h + 8x}{h} = \lim_{h \to 0} \frac{-8h}{h} So, it results in: f(x)=limh08=8f' (x) = \lim_{h \to 0} -8 = -8 Thus, f(x)=8f' (x) = -8.

Step 2

Determine: 6.2.1 $f' (x)$ if $f (x) = 3x^3 + \frac{\pi}{x}$

99%

104 rated

Answer

To find f(x)f' (x), we differentiate both terms:

  • The derivative of 3x33x^3 is 9x29x^2
  • The derivative of rac{\pi}{x} is πx2-\frac{\pi}{x^2}, using the power rule or quotient rule.

Combining these results gives: f(x)=9x2πx2f' (x) = 9x^2 - \frac{\pi}{x^2}

Step 3

6.2.2 $\frac{dy}{dx}$ if $y = x^2 (4x - 2x^2)$

96%

101 rated

Answer

For this, we apply the product rule: Let:

  • u=x2u = x^2 and v=(4x2x2)v = (4x - 2x^2).

The derivatives are:

  • dudx=2x\frac{du}{dx} = 2x
  • dvdx=44x\frac{dv}{dx} = 4 - 4x.

Using the product rule: dydx=udvdx+vdudx\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} This results in: dydx=x2(44x)+(4x2x2)(2x)\frac{dy}{dx} = x^2(4 - 4x) + (4x - 2x^2)(2x) Simplifying gives: dydx=4x24x3+8x24x3=12x28x3\frac{dy}{dx} = 4x^2 - 4x^3 + 8x^2 - 4x^3 = 12x^2 - 8x^3

Step 4

6.2.3 $D_x \left{ \sqrt{4x^4 - \frac{2}{5x^*}} + 8 r^* x \right}$

98%

120 rated

Answer

Here, we need to differentiate the expression with respect to xx. Let's denote: y=4x425x+8rxy = \sqrt{4x^4 - \frac{2}{5x}} + 8r^*x The derivative can be found via the chain and sum rules. For the first part: ddx(4x425x)=124x425x(16x3+25x2)\frac{d}{dx} \left(\sqrt{4x^4 - \frac{2}{5x}}\right) = \frac{1}{2\sqrt{4x^4 - \frac{2}{5x}}} \cdot (16x^3 + \frac{2}{5x^2}) For the second part, differentiate 8rx8r^*x: ddx(8rx)=8r\frac{d}{dx}(8r^*x) = 8r^* Then combine both results to form: D_x \left{ y \right} = \frac{1}{2\sqrt{4x^4 - \frac{2}{5x}}} \cdot (16x^3 + \frac{2}{5x^2}) + 8r^*

Step 5

The gradient of the tangent to the curve defined by $g (x) = 6x^2 + 3x$ at $x = p$ is -21. 6.3.1 Determine the numerical value of $p$.

97%

117 rated

Answer

First, differentiate g(x)g (x) to find g(x)g' (x): g(x)=12x+3g' (x) = 12x + 3 Setting this equal to -21 to find pp gives: 12p+3=2112p + 3 = -21 Solving for pp: 12p=24p=212p = -24 \Rightarrow p = -2

Step 6

6.3.2 Hence, determine the equation of the tangent to curve $g$ at $x = p$ in the form $y = ...$

97%

121 rated

Answer

Using the point-slope form for the tangent line, we have:

  1. The slope at p=2p = -2 is: g(2)=12(2)+3=24+3=21g' (-2) = 12(-2) + 3 = -24 + 3 = -21
  2. The point on the curve at x=2x = -2 is: g(2)=6(2)2+3(2)=246=18g (-2) = 6(-2)^2 + 3(-2) = 24 - 6 = 18
  3. The equation of the tangent line is given by: y18=21(x+2)y - 18 = -21(x + 2) Rearranging yields: y=21x42+18y = -21x - 42 + 18 Thus, the equation is: y=21x24y = -21x - 24

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;