Photo AI

6.1 Determine $f'(x)$ using FIRST PRINCIPLES if $f(x) = 2x + 3$ - NSC Technical Mathematics - Question 6 - 2021 - Paper 1

Question icon

Question 6

6.1-Determine-$f'(x)$-using-FIRST-PRINCIPLES-if-$f(x)-=-2x-+-3$-NSC Technical Mathematics-Question 6-2021-Paper 1.png

6.1 Determine $f'(x)$ using FIRST PRINCIPLES if $f(x) = 2x + 3$. 6.2 Determine: 6.2.1 $\frac{dy}{dx}$ if $y = -x^5 + 3x^4$. 6.2.2 $f'(x)$ if $f(x) = \frac{3}{x^4}... show full transcript

Worked Solution & Example Answer:6.1 Determine $f'(x)$ using FIRST PRINCIPLES if $f(x) = 2x + 3$ - NSC Technical Mathematics - Question 6 - 2021 - Paper 1

Step 1

Determine $f'(x)$ using FIRST PRINCIPLES if $f(x) = 2x + 3$

96%

114 rated

Answer

To find the derivative from first principles, we apply the definition:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

Substituting the function into the definition:

=limh0(2(x+h)+3)(2x+3)h= \lim_{h \to 0} \frac{(2(x+h) + 3) - (2x + 3)}{h} =limh02hh=limh02=2= \lim_{h \to 0} \frac{2h}{h} = \lim_{h \to 0} 2 = 2

Thus, f(x)=2f'(x) = 2.

Step 2

$\frac{dy}{dx}$ if $y = -x^5 + 3x^4$

99%

104 rated

Answer

Using standard differentiation rules:

dydx=5x4+12x3\frac{dy}{dx} = -5x^4 + 12x^3

Step 3

$f'(x)$ if $f(x) = \frac{3}{x^4} - \frac{x}{\sqrt{x}}$

96%

101 rated

Answer

We differentiate each term:

  1. For 3x4\frac{3}{x^4}: ddx(3x4)=12x5\frac{d}{dx}\left(3x^{-4}\right) = -12x^{-5}

  2. For xx-\frac{x}{\sqrt{x}}: =ddx(x12)=(12x12)12x= -\frac{d}{dx}\left(x^{\frac{1}{2}}\right) = -\left(\frac{1}{2}x^{-\frac{1}{2}}\right) \Rightarrow -\frac{1}{2\sqrt{x}}

Combining gives:

f(x)=12x512xf'(x) = -12x^{-5} - \frac{1}{2\sqrt{x}}

Step 4

$D_x \left[ \frac{x^2 + x - 6}{x + 3} \right]$

98%

120 rated

Answer

To differentiate this quotient, we apply the quotient rule:

Let u=x2+x6u = x^2 + x - 6 and v=x+3v = x + 3.

The quotient rule states:

D(u/v)dx=vD(u)uD(v)v2\frac{D(u/v)}{dx} = \frac{v \cdot D(u) - u \cdot D(v)}{v^2}

Calculating:

  1. D(u)=2x+1D(u) = 2x + 1
  2. D(v)=1D(v) = 1

Thus,

Dx[x2+x6x+3]=(x+3)(2x+1)(x2+x6)(1)(x+3)2D_x \left[ \frac{x^2 + x - 6}{x + 3} \right] = \frac{(x + 3)(2x + 1) - (x^2 + x - 6)(1)}{(x + 3)^2}

This simplifies to: =1= 1

Step 5

Determine the average gradient of the function defined by $h(x) = -2x^2 + 2$ between the points where $x = 0$ and $x = 2$

97%

117 rated

Answer

The formula for average gradient between two points (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is:

mave=y2y1x2x1m_{ave} = \frac{y_2 - y_1}{x_2 - x_1}

Calculating y-values:

  • For x1=0x_1 = 0: y1=h(0)=2y_1 = h(0) = 2
  • For x2=2x_2 = 2: y2=h(2)=2(22)+2=6y_2 = h(2) = -2(2^2) + 2 = -6

Thus,

mave=6220=4m_{ave} = \frac{-6 - 2}{2 - 0} = -4

Step 6

Determine the gradient of the tangent to $g$ at the point where $x = -3$

97%

121 rated

Answer

To find the gradient of the tangent, we first calculate g(3)g'(-3).

Since g(x)=1x2g(x) = 1 - x^2, we differentiate:

g(x)=2xg'(x) = -2x

Substituting x=3x = -3 gives: g(3)=2(3)=6g'(-3) = -2(-3) = 6

Step 7

Hence, determine the equation of a tangent to $g$ at the point where $x = -3$

96%

114 rated

Answer

The equation of a tangent line can be expressed in point-slope form:

yy1=m(xx1)y - y_1 = m(x - x_1)

Where (x1,y1)=(3,g(3))(x_1, y_1) = (-3, g(-3)). First calculate g(3)g(-3):

g(3)=1(3)2=8g(-3) = 1 - (-3)^2 = -8

Thus, y1=8y_1 = -8, and m=6m = 6. The equation becomes:

y+8=6(x+3)y + 8 = 6(x + 3)

Simplifying: y=6x+188y = 6x + 18 - 8 y=6x+10y = 6x + 10

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;