Photo AI

Determine $f'(x)$ using FIRST PRINCIPLES if $f(x)=7x-2$ - NSC Technical Mathematics - Question 6 - 2018 - Paper 1

Question icon

Question 6

Determine--$f'(x)$-using-FIRST-PRINCIPLES-if-$f(x)=7x-2$-NSC Technical Mathematics-Question 6-2018-Paper 1.png

Determine $f'(x)$ using FIRST PRINCIPLES if $f(x)=7x-2$. Determine: 6.2.1 $\frac{d}{dx}(x^2)$ 6.2.2 $D_x (x^{\frac{3}{2}} - \sqrt{x})$ 6.2.3 $\frac{dy}{dx}$ ... show full transcript

Worked Solution & Example Answer:Determine $f'(x)$ using FIRST PRINCIPLES if $f(x)=7x-2$ - NSC Technical Mathematics - Question 6 - 2018 - Paper 1

Step 1

Determine $f'(x)$ using FIRST PRINCIPLES if $f(x)=7x-2$.

96%

114 rated

Answer

To find the derivative using first principles, we use the definition:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

Calculating:

f(x+h)=7(x+h)2f(x+h) = 7(x+h) - 2

Thus:

f(x+h)f(x)=[7(x+h)2][7x2]=7hf(x+h) - f(x) = [7(x+h) - 2] - [7x - 2] = 7h

We can substitute back into the limit:

f(x)=limh07hh=7f'(x) = \lim_{h \to 0} \frac{7h}{h} = 7

Therefore, f(x)=7f'(x) = 7.

Step 2

Determine: $\frac{d}{dx}(x^2)$

99%

104 rated

Answer

ddx(x2)=2x\frac{d}{dx}(x^2) = 2x.

Step 3

Determine: $D_x (x^{\frac{3}{2}} - \sqrt{x})$

96%

101 rated

Answer

Using the power rule:

Dx(x32x12)=32x32112x121D_x (x^{\frac{3}{2}} - x^{\frac{1}{2}}) = \frac{3}{2} x^{\frac{3}{2}-1} - \frac{1}{2} x^{\frac{1}{2}-1}

This simplifies to:

=32x1212x12=32x121x=22x=2x = \frac{3}{2} x^{\frac{1}{2}} - \frac{1}{2} x^{-\frac{1}{2}} = \frac{3}{2\sqrt{x}} - \frac{1}{2} \frac{1}{\sqrt{x}} = \frac{2}{2\sqrt{x}} = \frac{2}{\sqrt{x}}.

Step 4

Determine: $\frac{dy}{dx}$ if $y=\frac{x^3+2}{x^2}$

98%

120 rated

Answer

To differentiate y=x3+2x2y = \frac{x^3 + 2}{x^2}, we apply the quotient rule:

dydx=(x2)(3x2)(x3+2)(2x)(x2)2\frac{dy}{dx} = \frac{(x^2)(3x^2) - (x^3 + 2)(2x)}{(x^2)^2}

This gives:

=3x4(2x4+4x)x4=x44xx4=14x3= \frac{3x^4 - (2x^4 + 4x)}{x^4} = \frac{x^4 - 4x}{x^4} = 1 - \frac{4}{x^3}.

Step 5

Calculate the numerical value of $k$.

97%

117 rated

Answer

To find kk, substitute x=2x=2 in p(x)p(x):

$$ p(2) = (2)^3 + 1 = 8 + 1 = k $,

Thus, k=9k = 9.

Step 6

Determine $p'(x)$.

97%

121 rated

Answer

Using the power rule for differentiation:

$$ p'(x) = \frac{d}{dx} (x^3 + 1) = 3x^2 $.

Step 7

Hence, determine the equation of the tangent to the curve of the function at point $A$.

96%

114 rated

Answer

The derivative at point A(2;9)A(2; 9) is:

p(2)=3(2)2=12.p'(2) = 3(2)^2 = 12.

Using the point-slope form of a line, yy1=m(xx1)y - y_1 = m(x - x_1):

y9=12(x2)y - 9 = 12(x - 2)

This can be rearranged to:

y=12x24+9=12x15y = 12x - 24 + 9 = 12x - 15,

Thus, the equation of the tangent line at point AA is y=12x15y = 12x - 15.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;