Photo AI

Determine the following integrals: 9.1.1 $\int (x^{2} + 6x) \, dx$ 9.1.2 $\int (3x^{+} 1) \, dx$ The sketch below represents the area bounded by the function $g$ defined by: g(x) = 3x^{2} and the points where $x = k$ and $x = 4$ - NSC Technical Mathematics - Question 9 - 2021 - Paper 1

Question icon

Question 9

Determine-the-following-integrals:--9.1.1--$\int-(x^{2}-+-6x)-\,-dx$--9.1.2--$\int-(3x^{+}-1)-\,-dx$--The-sketch-below-represents-the-area-bounded-by-the-function-$g$-defined-by:--g(x)-=-3x^{2}--and-the-points-where-$x-=-k$-and-$x-=-4$-NSC Technical Mathematics-Question 9-2021-Paper 1.png

Determine the following integrals: 9.1.1 $\int (x^{2} + 6x) \, dx$ 9.1.2 $\int (3x^{+} 1) \, dx$ The sketch below represents the area bounded by the function $g... show full transcript

Worked Solution & Example Answer:Determine the following integrals: 9.1.1 $\int (x^{2} + 6x) \, dx$ 9.1.2 $\int (3x^{+} 1) \, dx$ The sketch below represents the area bounded by the function $g$ defined by: g(x) = 3x^{2} and the points where $x = k$ and $x = 4$ - NSC Technical Mathematics - Question 9 - 2021 - Paper 1

Step 1

Determine the integral $\int (x^{2} + 6x) \, dx$

96%

114 rated

Answer

To solve the integral, we can separate the terms:

(x2+6x)dx=x2dx+6xdx\int (x^{2} + 6x) \, dx = \int x^{2} \, dx + \int 6x \, dx

Calculating these integrals individually:

  • The first term is: x2dx=x33+C\int x^{2} \, dx = \frac{x^{3}}{3} + C
  • The second term is: 6xdx=3x2+C\int 6x \, dx = 3x^{2} + C

Combining these gives: (x2+6x)dx=x33+3x2+C.\int (x^{2} + 6x) \, dx = \frac{x^{3}}{3} + 3x^{2} + C.

Step 2

Determine the integral $\int (3x + 1) \, dx$

99%

104 rated

Answer

Similarly, we can compute this integral:

(3x+1)dx=3xdx+1dx\int (3x + 1) \, dx = \int 3x \, dx + \int 1 \, dx

Calculating these integrals:

  • The first term is: 3xdx=3x22+C\int 3x \, dx = \frac{3x^{2}}{2} + C
  • The second term is: 1dx=x+C\int 1 \, dx = x + C

Combining these gives: (3x+1)dx=3x22+x+C.\int (3x + 1) \, dx = \frac{3x^{2}}{2} + x + C.

Step 3

Determine the value of k if the bounded area is 56 square units.

96%

101 rated

Answer

To find the area between the curve g(x)=3x2g(x) = 3x^{2} from x=kx=k to x=4x=4, we set up the integral:

A=k43x2dxA = \int_{k}^{4} 3x^{2} \, dx

Calculating this integral:

  • First, compute: 3x2dx=x3+C\int 3x^{2} \, dx = x^{3} + C

Thus, the definite integral becomes: A=[x3]k4=43k3=64k3A = \left[ x^{3} \right]_{k}^{4} = 4^{3} - k^{3} = 64 - k^{3}

Setting this equal to 56 gives: 64k3=5664 - k^{3} = 56

Solving for k3k^{3}: k3=6456=8k=2.k^{3} = 64 - 56 = 8 \Rightarrow k = 2.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;