Photo AI

3.1 Simplify the following, without using a calculator: 3.1.1 $7(3)^0$ 3.1.2 $\\sqrt{(242 - \\sqrt{72})}$ 3.1.3 $ rac{9^{n-1} \times 27^{3-2n}}{81^{2-n}}$ 3.2 Solve for $x$: $\log(x + 2) - \log x = 1$ 3.3 Given the complex number: $z = 5 - 5i$ 3.3.1 Write down the quadrant, in the complex plane, in which $z$ lies - NSC Technical Mathematics - Question 3 - 2023 - Paper 1

Question icon

Question 3

3.1-Simplify-the-following,-without-using-a-calculator:--3.1.1--$7(3)^0$----3.1.2--$\\sqrt{(242---\\sqrt{72})}$----3.1.3--$-rac{9^{n-1}-\times-27^{3-2n}}{81^{2-n}}$----3.2-Solve-for-$x$:--$\log(x-+-2)---\log-x-=-1$----3.3-Given-the-complex-number:--$z-=-5---5i$----3.3.1-Write-down-the-quadrant,-in-the-complex-plane,-in-which-$z$-lies-NSC Technical Mathematics-Question 3-2023-Paper 1.png

3.1 Simplify the following, without using a calculator: 3.1.1 $7(3)^0$ 3.1.2 $\\sqrt{(242 - \\sqrt{72})}$ 3.1.3 $ rac{9^{n-1} \times 27^{3-2n}}{81^{2-n}}$ ... show full transcript

Worked Solution & Example Answer:3.1 Simplify the following, without using a calculator: 3.1.1 $7(3)^0$ 3.1.2 $\\sqrt{(242 - \\sqrt{72})}$ 3.1.3 $ rac{9^{n-1} \times 27^{3-2n}}{81^{2-n}}$ 3.2 Solve for $x$: $\log(x + 2) - \log x = 1$ 3.3 Given the complex number: $z = 5 - 5i$ 3.3.1 Write down the quadrant, in the complex plane, in which $z$ lies - NSC Technical Mathematics - Question 3 - 2023 - Paper 1

Step 1

3.1.1 $7(3)^0$

96%

114 rated

Answer

Since any number raised to the power of zero equals one, we have:

7(3)0=7×1=7.7(3)^0 = 7 \times 1 = 7.

Step 2

3.1.2 $\sqrt{(242 - \sqrt{72})}$

99%

104 rated

Answer

First, simplify 72\sqrt{72}:

72=36×2=62.\sqrt{72} = \sqrt{36 \times 2} = 6\sqrt{2}.
Now compute:

24262=2412161=2(12162).242 - 6\sqrt{2} = 2\sqrt{4 \cdot 121 - 6\cdot 1} = 2\sqrt{(121 - 6\sqrt{2})}.

Step 3

3.1.3 $\frac{9^{n-1} \times 27^{3-2n}}{81^{2-n}}$

96%

101 rated

Answer

Express all numbers as powers of 3:

(32)n1×(33)32n(34)2n=32(n1)×396n384n=32n2+96n384n.\frac{(3^2)^{n-1} \times (3^3)^{3-2n}}{(3^4)^{2-n}} = \frac{3^{2(n-1)} \times 3^{9-6n}}{3^{8-4n}} = \frac{3^{2n-2 + 9 - 6n}}{3^{8-4n}}.
Using properties of exponents, combine:

32n2+96n(84n)=34n+7.3^{2n-2+9-6n - (8-4n)} = 3^{-4n + 7}.
Thus, we have:

134n=13(n7).\frac{1}{3^{4-n}} = \frac{1}{3^{(n - 7)}}.

Step 4

3.2 Solve for $x$: $\log(x + 2) - \log x = 1$

98%

120 rated

Answer

Using the properties of logarithms:

log(x+2x)=1.\log\left(\frac{x+2}{x}\right) = 1.
Exponential form gives:

x+2x=10.\frac{x+2}{x} = 10. Now, solving for xx:

x+2=10x2=9xx=29.x + 2 = 10x \Rightarrow 2 = 9x \Rightarrow x = \frac{2}{9}.

Step 5

3.3.1 Write down the quadrant, in the complex plane, in which $z$ lies.

97%

117 rated

Answer

The real part of zz is 5 (positive) and the imaginary part is -5 (negative), hence, zz lies in the 4th quadrant.

Step 6

3.3.2 Express the complex number $z$ in polar form.

97%

121 rated

Answer

To express z=55iz = 5 - 5i in polar form, calculate the modulus and argument:

r=52+(5)2=50=52,r = \sqrt{5^2 + (-5)^2} = \sqrt{50} = 5\sqrt{2},
θ=tan1(55)=π4.\theta = \tan^{-1}\left(\frac{-5}{5}\right) = -\frac{\pi}{4}.
Thus, the polar form is:

z=52(cos(π4)+isin(π4)).z = 5\sqrt{2}(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})).

Step 7

3.4 Solve for $m$ and if $m = 3i(zi) + 7 - ni$

96%

114 rated

Answer

First, substitute zz into the equation:

m=3i(55i)+7ni.m = 3i(5 - 5i) + 7 - ni.
This simplifies to:

=15i+15+7ni=15+7+15ini=22+(15n)i.= 15i + 15 + 7 - ni = 15 + 7 + 15i - ni = 22 + (15 - n)i.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;