Photo AI

3.1 Simplify (showing ALL calculations) the following WITHOUT using a calculator: 3.1.1 $\\sqrt{16a^{6}}$ 3.1.2 $\ rac{\\log, 32 + \log 100 + 9}{\\log, 32 - \log 100 + 9}$ 3.1.3 $(4\sqrt{5} + \sqrt{2}) (\sqrt{2 - 4\sqrt{5}})$ 3.2 Solve for $x$: $\log_{10}x = 3 - \log_{10}(x + 6)$ 3.3 Given the complex number $z = 2w - 7i$ where $w = \frac{1}{2} + 3i$ 3.3.1 Determine $z$ in the form $a + bi$ 3.3.2 Express $z$ in the polar form $z = r \text{cis } \theta$ (where $\theta$ is in degrees) 3.4 Solve for $a$ and $b$ if $a + b + ai - bi = 5 - 3i$ - NSC Technical Mathematics - Question 3 - 2021 - Paper 1

Question icon

Question 3

3.1-Simplify-(showing-ALL-calculations)-the-following-WITHOUT-using-a-calculator:--3.1.1-$\\sqrt{16a^{6}}$---3.1.2-$\-rac{\\log,-32-+-\log-100-+-9}{\\log,-32---\log-100-+-9}$--3.1.3-$(4\sqrt{5}-+-\sqrt{2})-(\sqrt{2---4\sqrt{5}})$--3.2-Solve-for-$x$:-$\log_{10}x-=-3---\log_{10}(x-+-6)$--3.3-Given-the-complex-number-$z-=-2w---7i$-where-$w-=-\frac{1}{2}-+-3i$--3.3.1-Determine-$z$-in-the-form-$a-+-bi$--3.3.2-Express-$z$-in-the-polar-form-$z-=-r-\text{cis-}-\theta$-(where-$\theta$-is-in-degrees)--3.4-Solve-for-$a$-and-$b$-if-$a-+-b-+-ai---bi-=-5---3i$-NSC Technical Mathematics-Question 3-2021-Paper 1.png

3.1 Simplify (showing ALL calculations) the following WITHOUT using a calculator: 3.1.1 $\\sqrt{16a^{6}}$ 3.1.2 $\ rac{\\log, 32 + \log 100 + 9}{\\log, 32 - \log ... show full transcript

Worked Solution & Example Answer:3.1 Simplify (showing ALL calculations) the following WITHOUT using a calculator: 3.1.1 $\\sqrt{16a^{6}}$ 3.1.2 $\ rac{\\log, 32 + \log 100 + 9}{\\log, 32 - \log 100 + 9}$ 3.1.3 $(4\sqrt{5} + \sqrt{2}) (\sqrt{2 - 4\sqrt{5}})$ 3.2 Solve for $x$: $\log_{10}x = 3 - \log_{10}(x + 6)$ 3.3 Given the complex number $z = 2w - 7i$ where $w = \frac{1}{2} + 3i$ 3.3.1 Determine $z$ in the form $a + bi$ 3.3.2 Express $z$ in the polar form $z = r \text{cis } \theta$ (where $\theta$ is in degrees) 3.4 Solve for $a$ and $b$ if $a + b + ai - bi = 5 - 3i$ - NSC Technical Mathematics - Question 3 - 2021 - Paper 1

Step 1

3.1.1 Simplify $\sqrt{16a^{6}}$

96%

114 rated

Answer

To simplify 16a6\sqrt{16a^{6}}, we first notice that:

16a6=16a6\sqrt{16a^{6}} = \sqrt{16} \cdot \sqrt{a^{6}}

Calculating these separately:

16=4\sqrt{16} = 4 a6=a3\sqrt{a^{6}} = a^{3}

Combining these results gives:

16a6=4a3\sqrt{16a^{6}} = 4a^{3}

Step 2

3.1.2 Simplify $\frac{\log, 32 + \log 100 + 9}{\log, 32 - \log 100 + 9}$

99%

104 rated

Answer

We start by using the logarithm properties:

Recall that: loga+logb=log(ab)\log a + \log b = \log(ab) and logalogb=log(ab)\log a - \log b = \log(\frac{a}{b}).

First compute the numerator and denominator separately:

Numerator: log(32)+log(100)+9=log(32×100)+9\log(32) + \log(100) + 9 = \log(32 \times 100) + 9 =log(3200)+9= \log(3200) + 9

Denominator: log(32)log(100)+9=log(32100)+9\log(32) - \log(100) + 9 = \log(\frac{32}{100}) + 9 =log(0.32)+9= \log(0.32) + 9

Thus, we have: log(3200)+9log(0.32)+9\frac{\log(3200) + 9}{\log(0.32) + 9}

Step 3

3.1.3 Simplify $(4\sqrt{5} + \sqrt{2}) (\sqrt{2 - 4\sqrt{5}})$

96%

101 rated

Answer

This expression involves distributing the terms.

First, compute 245\sqrt{2 - 4\sqrt{5}}.

Let's simplify the expression inside the square root:

Calculate: 2452 - 4\sqrt{5}

Assuming further simplification can be done, we multiply:

(45+2)(245)(4\sqrt{5} + \sqrt{2})(\sqrt{2 - 4\sqrt{5}})

This will not yield simple results without further information, so we would leave it as is unless specific values are provided.

Step 4

3.2 Solve for $x$: $\log_{10}x = 3 - \log_{10}(x + 6)$

98%

120 rated

Answer

To solve for xx, we first manipulate the equation.

Rearranging gives: log10x+log10(x+6)=3\log_{10}x + \log_{10}(x + 6) = 3

Using the property of logarithms: log10(x(x+6))=3\log_{10}(x(x + 6)) = 3

Exponentiating both sides: x(x+6)=103x(x + 6) = 10^{3} x(x+6)=1000x(x + 6) = 1000

This leads to the quadratic equation: x2+6x1000=0x^{2} + 6x - 1000 = 0

Apply the quadratic formula: x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} Here: a=1a = 1, b=6b = 6, and c=1000c = -1000.

Calculating the discriminant: b24ac=36+4000=4036b^2 - 4ac = 36 + 4000 = 4036

Thus: x=6±40362x = \frac{{-6 \pm \sqrt{4036}}}{2}

Finally, calculate the roots to find xx.

Step 5

3.3.1 Determine $z$ in the form $a + bi$

97%

117 rated

Answer

Given the expression z=2w7iz = 2w - 7i and w=12+3iw = \frac{1}{2} + 3i, we substitute:

z=2(12+3i)7iz = 2\left(\frac{1}{2} + 3i\right) - 7i

Calculating: =1+6i7i= 1 + 6i - 7i =1i= 1 - i

Thus, in the form a+bia + bi, we have: z=1iz = 1 - i

Step 6

3.3.2 Express $z$ in the polar form $z = r \text{cis } \theta$ (where $\theta$ is in degrees)

97%

121 rated

Answer

For the complex number z=1iz = 1 - i, we first find the modulus rr:

r=a2+b2=12+(1)2=2r = \sqrt{a^2 + b^2} = \sqrt{1^2 + (-1)^2} = \sqrt{2}

Next, we determine the angle θ\theta using the tangent function:

tanθ=ba=11\tan \theta = \frac{b}{a} = \frac{-1}{1}

This gives: θ=tan1(1)\theta = \text{tan}^{-1}(-1)

In degrees, this is 315315^{\circ} (fourth quadrant).

Thus, the polar form is: z=2cis 315z = \sqrt{2} \text{cis } 315^{\circ}

Step 7

3.4 Solve for $a$ and $b$ if $a + b + ai - bi = 5 - 3i$

96%

114 rated

Answer

To solve for aa and bb, we first rewrite the equation:

a+b+aibi=53ia + b + ai - bi = 5 - 3i

Grouping real and imaginary parts gives: a+b=5a + b = 5 ab=3a - b = -3

Now, we can solve this system of equations. Adding the two equations: 2a=2    a=12a = 2 \implies a = 1

Substituting aa back into one of the equations, say a+b=5a + b = 5: 1+b=5    b=41 + b = 5 \implies b = 4

Therefore, the solution is: a=1,b=4a = 1, b = 4

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;