Photo AI

Vereenvoudig die volgende sonder om 'n sakrekenaar te gebruik: 3.1.1 $$ \frac{8 \cdot x^{3} \cdot y^{2}}{16 \cdot x^{4} \cdot y^{4}} $$ (laat die antwoord met positiwe eksponente) 3.1.2 $$ \frac{\sqrt{48} + \sqrt{12}}{27} $$ 3.2 Indien $log_{5} m = m$, bepaal die volgende in terme van $m$: 3.2.1 $log 25$ 3.2.2 $log 2$ 3.3 Los op vir $x$: $$ log_{2}(x + 3) - 3 = - log_{2}(x - 4) $$ 3.4 Gegee die komplekse getalle: $$ z_{1} = -1 + 3i \ en \ z_{2} = \sqrt{2} \ ext{cis} 135^{\circ} $$ 3.4.1 Skryf die toegedoven van $z_{1}$ neer - NSC Technical Mathematics - Question 3 - 2022 - Paper 1

Question icon

Question 3

Vereenvoudig-die-volgende-sonder-om-'n-sakrekenaar-te-gebruik:--3.1.1-$$-\frac{8-\cdot-x^{3}-\cdot-y^{2}}{16-\cdot-x^{4}-\cdot-y^{4}}-$$--(laat-die-antwoord-met-positiwe-eksponente)--3.1.2-$$-\frac{\sqrt{48}-+-\sqrt{12}}{27}-$$--3.2-Indien-$log_{5}-m-=-m$,-bepaal-die-volgende-in-terme-van-$m$:--3.2.1-$log-25$--3.2.2-$log-2$--3.3-Los-op-vir-$x$:--$$-log_{2}(x-+-3)---3-=---log_{2}(x---4)-$$--3.4-Gegee-die-komplekse-getalle:--$$-z_{1}-=--1-+-3i-\-en-\-z_{2}-=-\sqrt{2}-\--ext{cis}-135^{\circ}-$$--3.4.1-Skryf-die-toegedoven-van-$z_{1}$-neer-NSC Technical Mathematics-Question 3-2022-Paper 1.png

Vereenvoudig die volgende sonder om 'n sakrekenaar te gebruik: 3.1.1 $$ \frac{8 \cdot x^{3} \cdot y^{2}}{16 \cdot x^{4} \cdot y^{4}} $$ (laat die antwoord met posi... show full transcript

Worked Solution & Example Answer:Vereenvoudig die volgende sonder om 'n sakrekenaar te gebruik: 3.1.1 $$ \frac{8 \cdot x^{3} \cdot y^{2}}{16 \cdot x^{4} \cdot y^{4}} $$ (laat die antwoord met positiwe eksponente) 3.1.2 $$ \frac{\sqrt{48} + \sqrt{12}}{27} $$ 3.2 Indien $log_{5} m = m$, bepaal die volgende in terme van $m$: 3.2.1 $log 25$ 3.2.2 $log 2$ 3.3 Los op vir $x$: $$ log_{2}(x + 3) - 3 = - log_{2}(x - 4) $$ 3.4 Gegee die komplekse getalle: $$ z_{1} = -1 + 3i \ en \ z_{2} = \sqrt{2} \ ext{cis} 135^{\circ} $$ 3.4.1 Skryf die toegedoven van $z_{1}$ neer - NSC Technical Mathematics - Question 3 - 2022 - Paper 1

Step 1

3.1.1

96%

114 rated

Answer

To simplify the expression 8x3y216x4y4\frac{8 \cdot x^{3} \cdot y^{2}}{16 \cdot x^{4} \cdot y^{4}}, first, we can simplify the constants:

816=12\frac{8}{16} = \frac{1}{2}.

Next, simplify the variables:

x3x4=x34=x1 and y2y4=y24=y2\frac{x^{3}}{x^{4}} = x^{3-4} = x^{-1} \ and \ \frac{y^{2}}{y^{4}} = y^{2-4} = y^{-2}.

Combining these results, we have:

12x1y2=12xy2\frac{1}{2} \cdot x^{-1} \cdot y^{-2} = \frac{1}{2xy^{2}}.

Thus, the final answer is:

12xy2\frac{1}{2xy^{2}}. Please note that we express the answer with positive exponents as required.

Step 2

3.1.2

99%

104 rated

Answer

To simplify the expression 48+1227\frac{\sqrt{48} + \sqrt{12}}{27}, we start by simplifying the square roots:

48=163=43and12=43=23\sqrt{48} = \sqrt{16 \cdot 3} = 4\sqrt{3} \quad \text{and} \quad \sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}.

Thus, we have:

48+12=43+23=63\sqrt{48} + \sqrt{12} = 4\sqrt{3} + 2\sqrt{3} = 6\sqrt{3}.

Now we can substitute back into the original expression:

6327=239\frac{6\sqrt{3}}{27} = \frac{2\sqrt{3}}{9}.

Final answer: 239\frac{2\sqrt{3}}{9}.

Step 3

3.2.1

96%

101 rated

Answer

Given that log5m=mlog_{5} m = m, we can use the property of logarithms to find log25log 25:

log25=log(52)=2log5=2mlog 25 = log(5^{2}) = 2 \cdot log 5 = 2m.

Thus, the answer is: 2m2m.

Step 4

3.2.2

98%

120 rated

Answer

Using the same property as before:

log2=log(105)=log10log5=1mlog 2 = log(\frac{10}{5}) = log 10 - log 5 = 1 - m.

Therefore, the answer is: 1m1 - m.

Step 5

3.3

97%

117 rated

Answer

To solve for xx in the equation:

log2(x+3)3=log2(x4)log_{2}(x + 3) - 3 = - log_{2}(x - 4),

first, we can move the logs to one side:

log2(x+3)+log2(x4)=3log_{2}(x + 3) + log_{2}(x - 4) = 3.

Using log properties:

log2((x+3)(x4))=3log_{2}((x + 3)(x - 4)) = 3.

This exponentiates as:

(x+3)(x4)=23=8(x + 3)(x - 4) = 2^{3} = 8.

Expanding gives:

x2x12=0x^{2} - x - 12 = 0.

Factoring this quadratic gives:

(x+3)(x4)=0(x + 3)(x - 4) = 0,

thus, x=3x = -3 or x=4x = 4. However,

only x=5x = 5 satisfies the original logarithm's domain condition of x+3>0x + 3 > 0 and x4>0x - 4 > 0.

Final solutions: x=5extorx=4x = 5 ext{ or } x = 4.

Step 6

3.4.1

97%

121 rated

Answer

For the complex number:

z1=1+3iz_{1} = -1 + 3i,

the conjugate z1\overline{z_{1}} is:

z1=13i\overline{z_{1}} = -1 - 3i.

Step 7

3.4.2

96%

114 rated

Answer

To express z2=2cis135z_{2} = \sqrt{2} \text{cis} 135^{\circ} in standard form:

Recall cisθ=cosθ+isinθ\text{cis} \theta = cos \theta + i sin \theta:

z2=2(cos135+isin135)z_{2} = \sqrt{2} (cos 135^{\circ} + i sin 135^{\circ}).

Calculating, we find:

cos135=12andsin135=12cos 135^{\circ} = -\frac{1}{\sqrt{2}} \quad \text{and} \quad sin 135^{\circ} = \frac{1}{\sqrt{2}}

Thus: z2=2(12+i12)=1+iz_{2} = \sqrt{2}( -\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} ) = -1 + i.

Step 8

3.4.3

99%

104 rated

Answer

Given: z1=z2z_{1} = z_{2},

i.e.: 1+3i=1+i-1 + 3i = -1 + i.

This simplifies to: 3i=i3i = i,

yielding: 2i=02i = 0, confirming that z1z_{1} does not equal z2z_{2}. Thus:

The equality does not hold true.

Step 9

3.5

96%

101 rated

Answer

To solve for xx and yy in the equation: x+yi(1i)=4+5ix + yi - (1 - i) = 4 + 5i,

we rearrange it: (x1)+(y+1)i=4+5i(x - 1) + (y + 1)i = 4 + 5i

Equating real parts and imaginary parts gives: x1=4andy+1=5x - 1 = 4 \quad \text{and} \quad y + 1 = 5.

Thus, from x1=4x - 1 = 4 we find: x=5x = 5, and from y+1=5y + 1 = 5: y=4y = 4.

Final answers are: x=5 and y=4x = 5 \text{ and } y = 4.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;