Photo AI

6.1 Bepaal $f'(x)$ met gebruik van EERSTE BEGINSELS indien $f(x) = \frac{1}{2}^x$ - NSC Technical Mathematics - Question 6 - 2020 - Paper 1

Question icon

Question 6

6.1-Bepaal-$f'(x)$-met-gebruik-van-EERSTE-BEGINSELS-indien-$f(x)-=-\frac{1}{2}^x$-NSC Technical Mathematics-Question 6-2020-Paper 1.png

6.1 Bepaal $f'(x)$ met gebruik van EERSTE BEGINSELS indien $f(x) = \frac{1}{2}^x$. 6.2 Bepaal ELK van die volgende: 6.2.1 $\frac{dA}{dr}$ indien $A = \pi r^2$. 6.... show full transcript

Worked Solution & Example Answer:6.1 Bepaal $f'(x)$ met gebruik van EERSTE BEGINSELS indien $f(x) = \frac{1}{2}^x$ - NSC Technical Mathematics - Question 6 - 2020 - Paper 1

Step 1

Bepaal $f'(x)$ met gebruik van EERSTE BEGINSELS

96%

114 rated

Answer

To find the derivative using first principles, we start from:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

Substituting f(x)=12xf(x) = \frac{1}{2}^x, we have:

f(x)=limh012x+h12xhf'(x) = \lim_{h \to 0} \frac{\frac{1}{2}^{x+h} - \frac{1}{2}^x}{h}

This simplifies to:

f(x)=limh012x(12h1)hf'(x) = \lim_{h \to 0} \frac{\frac{1}{2}^x(\frac{1}{2}^h - 1)}{h}

We recognize 12h1ln(12)h\frac{1}{2}^h - 1 \approx \ln(\frac{1}{2}) h for small hh, leading to:

f(x)=12xln(12)f'(x) = \frac{1}{2}^x \ln(\frac{1}{2})

Thus, the final answer is:

f(x)=12xln(12)f'(x) = \frac{1}{2}^x \ln(\frac{1}{2})

Step 2

Bepaal $\frac{dA}{dr}$ indien $A = \pi r^{2}$

99%

104 rated

Answer

For the area A=πr2A = \pi r^2, the derivative with respect to rr is:

dAdr=2πr\frac{dA}{dr} = 2\pi r

This gives the rate of change of the area with respect to the radius.

Step 3

Bepaal $D_{x}\left[\left(x - \sqrt{x}\right)^{2}\right]$

96%

101 rated

Answer

To differentiate Dx[(xx)2]D_{x}\left[\left(x - \sqrt{x}\right)^{2}\right], we apply the chain rule:

Let u=xxu = x - \sqrt{x}. Then:

dudx=112x\frac{du}{dx} = 1 - \frac{1}{2\sqrt{x}}

Thus,

Using the chain rule:

Dx[u2]=2ududx=2(xx)(112x)D_{x}[u^2] = 2u \cdot \frac{du}{dx} = 2\left(x - \sqrt{x}\right)\left(1 - \frac{1}{2\sqrt{x}}\right)

Thus, we find:

Dx[(xx)2]=2(xx)(112x)D_{x}\left[\left(x - \sqrt{x}\right)^{2}\right] = 2\left(x - \sqrt{x}\right)\left(1 - \frac{1}{2\sqrt{x}}\right)

Step 4

Bepaal die numeriese waarde van $a$

98%

120 rated

Answer

Given the tangent line's equation 3xy+2=03x - y + 2 = 0 and that it is tangent to the curve g(x)=ax2xg(x) = ax^2 - x, we set:

y = ddx[g(x)]\frac{d}{dx}[g(x)] at the point (1,1)(-1, -1).

Given g(x)=2ax1g'(x) = 2ax - 1, substituting x=1x = -1:

g(1)=2a(1)1=2a1g'(-1) = 2a(-1) - 1 = -2a - 1

Setting this equal to the slope from the line 33:

2a1=32a=4a=2-2a - 1 = 3 \Rightarrow -2a = 4 \Rightarrow a = -2

Thus, the value of aa is 2-2.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;