Photo AI

6.1 Bepaal $f'(x)$ deur EERSTE BEGINSELS te gebruik as $f(x) = 5 - rac{1}{2} x$ - NSC Technical Mathematics - Question 6 - 2019 - Paper 1

Question icon

Question 6

6.1-Bepaal--$f'(x)$-deur-EERSTE-BEGINSELS-te-gebruik-as-$f(x)-=-5----rac{1}{2}-x$-NSC Technical Mathematics-Question 6-2019-Paper 1.png

6.1 Bepaal $f'(x)$ deur EERSTE BEGINSELS te gebruik as $f(x) = 5 - rac{1}{2} x$. 6.2 Bepaal die volgende: 6.2.1 $f'(x)$ as $f(x) = a^3 - 0,5x - x^1$ 6.2.2 $D_... show full transcript

Worked Solution & Example Answer:6.1 Bepaal $f'(x)$ deur EERSTE BEGINSELS te gebruik as $f(x) = 5 - rac{1}{2} x$ - NSC Technical Mathematics - Question 6 - 2019 - Paper 1

Step 1

Bepaal $f'(x)$ deur EERSTE BEGINSELS te gebruik as $f(x) = 5 - \frac{1}{2} x$

96%

114 rated

Answer

Om die afgeleide f(x)f'(x) te bereken deur middel van die eerste beginsels, gebruik ons die limiet:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

Hier is f(x)=512xf(x) = 5 - \frac{1}{2} x, dus moet ons f(x+h)f(x+h) bereken:

f(x+h)=512(x+h)=512x12hf(x+h) = 5 - \frac{1}{2}(x + h) = 5 - \frac{1}{2}x - \frac{1}{2}h

Nou substitueer ons dit in die limiet:

f(x)=limh0(512x12h)(512x)hf'(x) = \lim_{h \to 0} \frac{\left(5 - \frac{1}{2} x - \frac{1}{2} h\right) - \left(5 - \frac{1}{2} x\right)}{h}

Simplifiseer:

f(x)=limh012hh=limh012=12f'(x) = \lim_{h \to 0} \frac{-\frac{1}{2}h}{h} = \lim_{h \to 0} -\frac{1}{2} = -\frac{1}{2}

Dus, f(x)=12f'(x) = -\frac{1}{2}.

Step 2

Bepaal die volgende: 6.2.1 $f'(x)$ as $f(x) = a^3 - 0,5x - x^1$

99%

104 rated

Answer

Die afgeleide f(x)f'(x) kan direkt bereken word:

f(x)=00,51=1.5f'(x) = 0 - 0,5 - 1 = -1.5

Step 3

Bepaal die volgende: 6.2.2 $D_x \left[\sqrt{x + 2}\right]$

96%

101 rated

Answer

Hier gebruik ons die kettingreël om die afgeleide te bereken. Laat u=x+2u = x + 2, dan is Dx[u]=12uDx[u]D_x [\sqrt{u}] = \frac{1}{2\sqrt{u}} \cdot D_x[u]. Dus,:

Dx[x+2]=12x+21=12x+2D_x[\sqrt{x + 2}] = \frac{1}{2\sqrt{x + 2}} \cdot 1 = \frac{1}{2\sqrt{x + 2}}

Step 4

Maak $y$ die onderwerp van die vergelyking: 6.3.1 $xy + 2x^2 = 7x^6$

98%

120 rated

Answer

Om yy die onderwerp te maak, begin ons deur 2x22x^2 na die ander kant te skuif:

xy=7x62x2xy = 7x^6 - 2x^2

Nou deel ons deur xx (as x0x \neq 0):

y=7x62x2x=7x52xy = \frac{7x^6 - 2x^2}{x} = 7x^5 - 2x

Step 5

Bepaal vervolgens $\frac{dy}{dx}$: 6.3.2

97%

117 rated

Answer

Die afgeleide van yy kan bereken word met behulp van die reëls van afgeleid:

dydx=ddx(7x52x)=35x42\frac{dy}{dx} = \frac{d}{dx}(7x^5 - 2x) = 35x^4 - 2

Step 6

Die daaglikse wins indien 300 gloeilampe vervaardig word: 6.4.1

97%

121 rated

Answer

Bereken die daaglikse wins deur P(300)P(300) te vind:

P(300)=0.8(300)3200(300)P(300) = 0.8(300)^3 - 200(300)

P(300)=0.8(27000000)60000=R120000P(300) = 0.8(27000000) - 60000 = R120000

Step 7

Die getal gloeilampe wat vervaardig word, wat ‘n nul daaglikse wins sal oplewer: 6.4.2

96%

114 rated

Answer

Vir null wins, stel ons P(x)=0P(x) = 0:

0=0.8x3200x0 = 0.8x^3 - 200x

Factoriseer:

0=x(0.8x2200)0 = x(0.8x^2 - 200)

Dit gee x=0x = 0 of 0.8x2200=00.8x^2 - 200 = 0. Los vir xx op:

0.8x2=200x2=250x=2500.8x^2 = 200\Rightarrow x^2 = 250\Rightarrow x = 250,

Dus, 250 gloeilampe.

Step 8

Die veranderingstempo van die daaglikse wins met betrekking tot die getal gloeilampe, indien 200 gloeilampe vervaardig word: 6.4.3

99%

104 rated

Answer

Bereken die afgeleide van P(x)P(x):

P(x)=2.4x2200P'(x) = 2.4x^2 - 200

Nou vind ons die waarde wanneer x=200x = 200:

P(200)=2.4(200)2200P'(200) = 2.4(200)^2 - 200

=96000200=95800= 96000 - 200 = 95800

Die veranderingstempo is 95800 gloeilampe per dag.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;