9.2 Bepaal die ongearsedeerde oppervlakte, begrens deur die kromme en die \( x \)-as tussen die punte \( x = -3 \) en \( 2 \)
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the unshaded area bounded by the curve and the x-axis, we first compute the definite integral of the function from ( x = -3 ) to ( x = 2 ):
[ \int_{-3}^{2} (-x^2 - x + 6) , dx ]
Calculating this integral:
Find the antiderivative:
[ \int (-x^2 - x + 6) , dx = -\frac{x^3}{3} - \frac{x^2}{2} + 6x + C ]
Evaluate from -3 to 2:
[ \left[ -\frac{(2)^3}{3} - \frac{(2)^2}{2} + 6(2) \right] - \left[ -\frac{(-3)^3}{3} - \frac{(-3)^2}{2} + 6(-3) \right] ]
[ = \left[ -\frac{8}{3} - 2 + 12 \right] - \left[ 9 - \frac{9}{2} - 18 \right] ]
Simplifying this gives:
[ = \left[ \frac{28}{3} \right] - \left[ -\frac{27}{2} \right] ]
The total area is to be computed considering the unshaded area is less than the shaded area.