Photo AI

3.1 Vereenvoudig die volgende, sonder om 'n sakrekenaar te gebruik: 3.1.1 7(3x)⁰ 3.1.2 \(\sqrt{\left(242 - \sqrt{72}\right)}\) 3.1.3 \(\frac{9^{1 - x} \cdot 27^{2 - n}}{81^{2 - n}}\) 3.2 Los op vir x: \(\log(x + 2) - \log x = 1\) 3.3 Gee die komplekse getal: \(z = 5 - 5i\) 3.3.1 Skryf die kwadrant in die kompleksvlak neer waarin z lê - NSC Technical Mathematics - Question 3 - 2023 - Paper 1

Question icon

Question 3

3.1-Vereenvoudig-die-volgende,-sonder-om-'n-sakrekenaar-te-gebruik:--3.1.1-7(3x)⁰--3.1.2-\(\sqrt{\left(242---\sqrt{72}\right)}\)--3.1.3-\(\frac{9^{1---x}-\cdot-27^{2---n}}{81^{2---n}}\)--3.2-Los-op-vir-x:-\(\log(x-+-2)---\log-x-=-1\)--3.3-Gee-die-komplekse-getal:-\(z-=-5---5i\)--3.3.1-Skryf-die-kwadrant-in-die-kompleksvlak-neer-waarin-z-lê-NSC Technical Mathematics-Question 3-2023-Paper 1.png

3.1 Vereenvoudig die volgende, sonder om 'n sakrekenaar te gebruik: 3.1.1 7(3x)⁰ 3.1.2 \(\sqrt{\left(242 - \sqrt{72}\right)}\) 3.1.3 \(\frac{9^{1 - x} \cdot 27^{2... show full transcript

Worked Solution & Example Answer:3.1 Vereenvoudig die volgende, sonder om 'n sakrekenaar te gebruik: 3.1.1 7(3x)⁰ 3.1.2 \(\sqrt{\left(242 - \sqrt{72}\right)}\) 3.1.3 \(\frac{9^{1 - x} \cdot 27^{2 - n}}{81^{2 - n}}\) 3.2 Los op vir x: \(\log(x + 2) - \log x = 1\) 3.3 Gee die komplekse getal: \(z = 5 - 5i\) 3.3.1 Skryf die kwadrant in die kompleksvlak neer waarin z lê - NSC Technical Mathematics - Question 3 - 2023 - Paper 1

Step 1

3.1.1 7(3x)⁰

96%

114 rated

Answer

Since any number raised to the power of zero equals one, we have:

7(3x)0=7(1)=77(3x)^{0} = 7(1) = 7

Step 2

3.1.2 \(\sqrt{\left(242 - \sqrt{72}\right)}\)

99%

104 rated

Answer

To simplify this expression, we first find (\sqrt{72}):

72=362=62\sqrt{72} = \sqrt{36 \cdot 2} = 6\sqrt{2}

Thus, we can rewrite the expression:

24262\sqrt{242 - 6\sqrt{2}}

Next, we need to find (242) as an easier term:

24215.556\sqrt{242} \approx 15.556

This gives us:

24262\sqrt{242 - 6\sqrt{2}}

Therefore, we find that the result approximates or represents a number around 20.

Step 3

3.1.3 \(\frac{9^{1 - x} \cdot 27^{2 - n}}{81^{2 - n}}\)

96%

101 rated

Answer

We can rewrite the bases as powers of 3:

9=32,27=33,81=349 = 3^2, \quad 27 = 3^3, \quad 81 = 3^4

Substituting these values gives:

(32)1x(33)2n(34)2n=32(1x)33(2n)34(2n)\frac{(3^2)^{1 - x} \cdot (3^3)^{2 - n}}{(3^4)^{2 - n}} = \frac{3^{2(1 - x)} \cdot 3^{3(2 - n)}}{3^{4(2 - n)}}

Using properties of exponents:

322x+63n8+4n=32+n2x3^{2 - 2x + 6 - 3n - 8 + 4n} = 3^{-2 + n - 2x}

So the result simplifies to:

32+n2x3^{-2 + n - 2x}

Step 4

3.2 Los op vir x: \(\log(x + 2) - \log x = 1\)

98%

120 rated

Answer

Using the properties of logarithms, we can combine the logs:

log(x+2x)=1\log\left(\frac{x + 2}{x}\right) = 1

This implies:

x+2x=10\frac{x + 2}{x} = 10

Multiplying through by x yields:

x+2=10xx + 2 = 10x

Rearranging gives:

2=9xx=292 = 9x \quad \Rightarrow \quad x = \frac{2}{9}

Step 5

3.3.1 Skryf die kwadrant in die kompleksvlak neer waarin z lê.

97%

117 rated

Answer

The complex number is (z = 5 - 5i), which lies in the fourth quadrant since the real part (5) is positive and the imaginary part (-5) is negative.

Step 6

3.3.2 Druk die komplekse getal z in polêre vorm uit.

97%

121 rated

Answer

To express (z) in polar form, we calculate the modulus and argument:

  1. Modulus:

r=52+(5)2=25+25=50=52r = \sqrt{5^2 + (-5)^2} = \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2}

  1. Argument:

Using (\tan\theta = \frac{\text{Im}}{\text{Re}} = \frac{-5}{5} = -1 \Rightarrow \theta = -\frac{\pi}{4}$$

Thus, the polar form is:

z=r(cos(θ)+isin(θ))=52(cos(π4)+isin(π4))z = r(\cos(\theta) + i\sin(\theta)) = 5\sqrt{2}\left(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})\right)

Step 7

3.4 Los op vir m en n indien \(m = 3i(2i - 5) + 7 - ni\)

96%

114 rated

Answer

First, expand the expression:

m=3i(2i)3i(5)+7ni=6i215i+7nim = 3i(2i) - 3i(5) + 7 - ni = 6i^2 - 15i + 7 - ni

Since (i^2 = -1), substitute this to find:

m=6(1)15i+7ni=615i+7ni=1(15+n)im = 6(-1) - 15i + 7 - ni = -6 - 15i + 7 - ni = 1 - (15 + n)i

Thus, separating real and imaginary parts gives:

Real part: 1, Imaginary part: (-(15 + n))

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;