Photo AI

3.1 Simplify the following without the use of a calculator: 3.1.1 $\\sqrt{8x^{27}}$ 3.1.2 $9^{1} \cdot 4^{1} \cdot 6^{-2n}$ 3.1.3 $\sqrt{2 - \sqrt{-4}} - \sqrt{4k}$ 3.2 Given: $ rac{\log 72 - \log 2}{\log 6}$ 3.2.1 Write the following as a single logarithm: $\\log 72 - \log 2$ 3.2.2 Hence, simplify without using a calculator: $ rac{\log 72 - \log 2}{\log 6}$ 3.3 Solve for $x$: $5^{x^{2} - 5^{2}} = 600$ 3.4 Given the complex numbers: $r_{1} = 2 + 3i$ and $r_{2} = i$ 3.4.1 Write down the conjugate of $r_{2}$ - NSC Technical Mathematics - Question 3 - 2024 - Paper 1

Question icon

Question 3

3.1-Simplify-the-following-without-the-use-of-a-calculator:--3.1.1-$\\sqrt{8x^{27}}$--3.1.2-$9^{1}-\cdot-4^{1}-\cdot-6^{-2n}$--3.1.3-$\sqrt{2---\sqrt{-4}}---\sqrt{4k}$--3.2-Given:-$-rac{\log-72---\log-2}{\log-6}$--3.2.1-Write-the-following-as-a-single-logarithm:-$\\log-72---\log-2$--3.2.2-Hence,-simplify-without-using-a-calculator:-$-rac{\log-72---\log-2}{\log-6}$--3.3-Solve-for-$x$:-$5^{x^{2}---5^{2}}-=-600$--3.4-Given-the-complex-numbers:-$r_{1}-=-2-+-3i$-and-$r_{2}-=-i$--3.4.1-Write-down-the-conjugate-of-$r_{2}$-NSC Technical Mathematics-Question 3-2024-Paper 1.png

3.1 Simplify the following without the use of a calculator: 3.1.1 $\\sqrt{8x^{27}}$ 3.1.2 $9^{1} \cdot 4^{1} \cdot 6^{-2n}$ 3.1.3 $\sqrt{2 - \sqrt{-4}} - \sqrt{4k... show full transcript

Worked Solution & Example Answer:3.1 Simplify the following without the use of a calculator: 3.1.1 $\\sqrt{8x^{27}}$ 3.1.2 $9^{1} \cdot 4^{1} \cdot 6^{-2n}$ 3.1.3 $\sqrt{2 - \sqrt{-4}} - \sqrt{4k}$ 3.2 Given: $ rac{\log 72 - \log 2}{\log 6}$ 3.2.1 Write the following as a single logarithm: $\\log 72 - \log 2$ 3.2.2 Hence, simplify without using a calculator: $ rac{\log 72 - \log 2}{\log 6}$ 3.3 Solve for $x$: $5^{x^{2} - 5^{2}} = 600$ 3.4 Given the complex numbers: $r_{1} = 2 + 3i$ and $r_{2} = i$ 3.4.1 Write down the conjugate of $r_{2}$ - NSC Technical Mathematics - Question 3 - 2024 - Paper 1

Step 1

3.1.1 $\\sqrt{8x^{27}}$

96%

114 rated

Answer

To simplify sqrt8x27\\sqrt{8x^{27}}, we first express 8 as 232^3:

8x27=23x27=23x27=23/2x27/2=22x13.5=22x13x0.5\sqrt{8x^{27}} = \sqrt{2^3 x^{27}} = \sqrt{2^3} \cdot \sqrt{x^{27}} = 2^{3/2} \cdot x^{27/2} = 2 \sqrt{2} \cdot x^{13.5} = 2 \sqrt{2} x^{13} x^{0.5}

Therefore, the simplified expression is 22x13x2 \sqrt{2} x^{13} \sqrt{x}.

Step 2

3.1.2 $9^{1} \cdot 4^{1} \cdot 6^{-2n}$

99%

104 rated

Answer

First, we convert the bases to powers of primes:

91=32,41=22,62n=(23)2n=22n32n9^{1} = 3^{2}, \quad 4^{1} = 2^{2}, \quad 6^{-2n} = (2 \cdot 3)^{-2n} = 2^{-2n} \cdot 3^{-2n}

Now we can combine:

322222n32n=222n322n\Rightarrow 3^{2} \cdot 2^{2} \cdot 2^{-2n} \cdot 3^{-2n} = 2^{2 - 2n} \cdot 3^{2 - 2n}

Thus, the simplified expression is 222n322n2^{2 - 2n} \cdot 3^{2 - 2n}.

Step 3

3.1.3 $\sqrt{2 - \sqrt{-4}} - \sqrt{4k}$

96%

101 rated

Answer

First, simplify 4 \sqrt{-4}: 4=4i=2i\sqrt{-4} = \sqrt{4} i = 2i

Now substitute back: 22i4k\sqrt{2 - 2i} - \sqrt{4k} We can simplify further by keeping it as is for clarity unless specific values for k are given.

Step 4

3.2.1 Write the following as a single logarithm: $\log 72 - \log 2$

98%

120 rated

Answer

Using the property of logarithms that states logalogb=log(ab) \log a - \log b = \log \left( \frac{a}{b} \right): log72log2=log(722)=log36.\log 72 - \log 2 = \log \left( \frac{72}{2} \right) = \log 36.

Step 5

3.2.2 Hence, simplify without using a calculator: $\frac{\log 72 - \log 2}{\log 6}$

97%

117 rated

Answer

We have already established that log72log2=log36\log 72 - \log 2 = \log 36. Thus: log36log6=log636.\frac{\log 36}{\log 6} = \log_{6} 36. Using the change of base formula logb(a)=log(a)log(b)\log_{b}(a) = \frac{\log(a)}{\log(b)} gives us: log6(62)=2.\log_{6}(6^2) = 2. Therefore, log72log2log6=2.\frac{\log 72 - \log 2}{\log 6} = 2.

Step 6

3.3 Solve for $x$: $5^{x^{2} - 5^{2}} = 600$

97%

121 rated

Answer

Start by rewriting the equation: x225=log5(600)x^{2} - 25 = \log_{5}(600) To find solutions: x2=log5(600)+25x^{2} = \log_{5}(600) + 25 x=±log5(600)+25.x = \pm \sqrt{\log_{5}(600) + 25}.

Step 7

3.4.1 Write down the conjugate of $r_{2}$.

96%

114 rated

Answer

The conjugate of a complex number a+bia + bi is abia - bi. Hence, the conjugate of r2=ir_{2} = i is i-i.

Step 8

3.4.2 Hence, simplify $\frac{r_{1}}{r_{2}}$ and show ALL steps.

99%

104 rated

Answer

We have: r1r2=2+3ii.\frac{r_{1}}{r_{2}} = \frac{2 + 3i}{i}. Multiply the numerator and denominator by the conjugate of the denominator: =(2+3i)(i)i(i)=2i3i21=2i+3=32i.= \frac{(2 + 3i)(-i)}{i(-i)} = \frac{-2i - 3i^2}{-1} = -2i + 3 = 3 - 2i.

Step 9

3.5 Write down the numerical values of $a$ and $b$ if $a + bi = -i - 14$.

96%

101 rated

Answer

Comparing real and imaginary parts gives: a=14,b=1.a = -14, \quad b = -1.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;