Photo AI

Simplify the following WITHOUT using a calculator: 3.1.1 $(8^{1-a^{-3}})^{\frac{3}{4}}$ 3.1.2 $ ext{log}_2 16 + ext{log}_4 4$ 3.1.3 $\sqrt{50x^{10}} \cdot \sqrt{18x^{-4}}$ 3.2 Solve for $x$: $ ext{log}_3 (x+2) = 2 + \text{log}_3 x$ 3.3 Given the complex number $z = p + 4i$ with the modulus $\frac{2}{\sqrt{5}}$ and the argument $\theta \in (90^{\circ}, 180^{\circ})$ - NSC Technical Mathematics - Question 3 - 2021 - Paper 1

Question icon

Question 3

Simplify-the-following-WITHOUT-using-a-calculator:--3.1.1-$(8^{1-a^{-3}})^{\frac{3}{4}}$---3.1.2-$-ext{log}_2-16-+--ext{log}_4-4$--3.1.3-$\sqrt{50x^{10}}-\cdot-\sqrt{18x^{-4}}$--3.2-Solve-for-$x$:-$-ext{log}_3-(x+2)-=-2-+-\text{log}_3-x$--3.3-Given-the-complex-number-$z-=-p-+-4i$-with-the-modulus-$\frac{2}{\sqrt{5}}$-and-the-argument-$\theta-\in-(90^{\circ},-180^{\circ})$-NSC Technical Mathematics-Question 3-2021-Paper 1.png

Simplify the following WITHOUT using a calculator: 3.1.1 $(8^{1-a^{-3}})^{\frac{3}{4}}$ 3.1.2 $ ext{log}_2 16 + ext{log}_4 4$ 3.1.3 $\sqrt{50x^{10}} \cdot \sqrt... show full transcript

Worked Solution & Example Answer:Simplify the following WITHOUT using a calculator: 3.1.1 $(8^{1-a^{-3}})^{\frac{3}{4}}$ 3.1.2 $ ext{log}_2 16 + ext{log}_4 4$ 3.1.3 $\sqrt{50x^{10}} \cdot \sqrt{18x^{-4}}$ 3.2 Solve for $x$: $ ext{log}_3 (x+2) = 2 + \text{log}_3 x$ 3.3 Given the complex number $z = p + 4i$ with the modulus $\frac{2}{\sqrt{5}}$ and the argument $\theta \in (90^{\circ}, 180^{\circ})$ - NSC Technical Mathematics - Question 3 - 2021 - Paper 1

Step 1

3.1.1 $(8^{1-a^{-3}})^{\frac{3}{4}}$

96%

114 rated

Answer

To simplify this expression, we can apply the properties of exponents. First, rewrite the base and apply the power of a power rule:

(81a3)34=83(1a3)4=8343a34 (8^{1-a^{-3}})^{\frac{3}{4}} = 8^{\frac{3(1-a^{-3})}{4}} = 8^{\frac{3}{4} - \frac{3a^{-3}}{4}}

Next, express 88 as 232^3: =(23)343a34=23(343a34) = (2^3)^{\frac{3}{4} - \frac{3a^{-3}}{4}} = 2^{3(\frac{3}{4} - \frac{3a^{-3}}{4})}

Thus: =2949a34 = 2^{\frac{9}{4} - \frac{9a^{-3}}{4}}

Step 2

3.1.2 $ ext{log}_2 16 + ext{log}_4 4$

99%

104 rated

Answer

Using the properties of logarithms, we simplify:

  1. Start with extlog216 ext{log}_2 16: log216=log2(24)=4\text{log}_2 16 = \text{log}_2 (2^4) = 4

  2. Calculate extlog44 ext{log}_4 4: log44=log4(41)=1\text{log}_4 4 = \text{log}_4 (4^1) = 1

  3. Combine the results: 4+1=54 + 1 = 5

Step 3

3.1.3 $\sqrt{50x^{10}} \cdot \sqrt{18x^{-4}}$

96%

101 rated

Answer

To simplify this product of square roots, apply the property ab=ab\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}:

50x1018x4=5018x10x4\sqrt{50x^{10}} \cdot \sqrt{18x^{-4}} = \sqrt{50 \cdot 18 \cdot x^{10} \cdot x^{-4}}

First, simplify the product inside the square root: 5018=900andx10x4=x104=x650 \cdot 18 = 900 \quad \text{and} \quad x^{10} \cdot x^{-4} = x^{10-4} = x^{6}

Thus: =900x6=900x6=30x3= \sqrt{900x^{6}} = \sqrt{900} \cdot \sqrt{x^{6}} = 30x^{3}

Step 4

3.2 Solve for $x$: $ ext{log}_3 (x+2) = 2 + \text{log}_3 x$

98%

120 rated

Answer

To solve for xx, start by isolating the logarithmic expressions:

  1. Rewrite 22 as extlog39 ext{log}_3 9 (since 32=93^2 = 9): log3(x+2)=log39+log3x\text{log}_3 (x+2) = \text{log}_3 9 + \text{log}_3 x

  2. Combine the logarithms using the property of logarithms: log3(x+2)=log3(9x)\text{log}_3 (x + 2) = \text{log}_3 (9x)

  3. Set the arguments equal to each other since the logarithm is one-to-one: x+2=9xx + 2 = 9x

  4. Solve for xx: 2=9xx    2=8x    x=142 = 9x - x\implies 2 = 8x \implies x = \frac{1}{4}

Step 5

3.3.1 Determine the value of $p$.

97%

117 rated

Answer

Given that the modulus is 25\frac{2}{\sqrt{5}}, we use the formula for modulus:

z=p2+42|z| = \sqrt{p^2 + 4^2}

Set this equal to the given modulus: p2+16=25\sqrt{p^2 + 16} = \frac{2}{\sqrt{5}}

Square both sides: p2+16=(25)2p^2 + 16 = \left(\frac{2}{\sqrt{5}}\right)^2 p2+16=45p^2 + 16 = \frac{4}{5}

Now, isolate p2p^2: p2=4516=4805=765p^2 = \frac{4}{5} - 16 = \frac{4 - 80}{5} = \frac{-76}{5}

Since p2p^2 cannot be negative, there's a misinterpretation of the parameters in the problem. We need additional context for pp.

Step 6

3.3.2 Hence, express $z$ in the polar form $z = r \text{cis} \theta$

97%

121 rated

Answer

The polar form of a complex number is expressed as z=rcisθz = r \text{cis} \theta, where rr is the modulus and heta heta is the argument.

  1. From our previous calculation, assume we've defined rr correctly.
  2. The argument is given as θ(90,180)\theta \in (90^{\circ}, 180^{\circ}).
  3. Thus, with placeholder values assuming we find correct pp and θ\theta: z=rcisθz = r \text{cis} \theta

Final form is expressed as specified based on modulus and angle.

Step 7

3.4 Solve for $m$ and if $2m - ni - 6i = -3i (4 + 5)$

96%

114 rated

Answer

To solve, start with the equation: 2mni6i=3i(4+5)2m - ni - 6i = -3i(4 + 5)

  1. Compute the right side: 3i(4+5)=3i9=27i-3i(4 + 5) = -3i \cdot 9 = -27i

  2. Rewrite the equation: 2mni6i=27i2m - ni - 6i = -27i

  3. Combine like terms: 2m(n+6)i=27i2m - (n + 6)i = -27i

Equating real and imaginary parts gives:

  1. Real part: 2m=0    m=02m = 0\implies m = 0,
  2. Imaginary part: (n+6)=27    n+6=27    n=21-(n + 6) = -27\implies n + 6 = 27\implies n = 21.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;