Photo AI

3.1 Simplify the following WITHOUT using a calculator: 3.1.1 $\frac{3^3 \times 3^{-2}}{9^1}$ 3.1.2 $\frac{\sqrt{5+4}-\sqrt{-45}}$ 3.1.3 $log_3 8 + log_{10} 25$ 3.2 Solve for $x$: $log_4 (x-6) = log_25$ 3.3 In the RLC circuit, the impedance of the two impedances connected in series are: $Z_1 = 4/2 \text{cis} 225^\circ$ and $Z_2 = 3 - 4i$ 3.3.1 Express $Z_1$ in rectangular form - NSC Technical Mathematics - Question 3 - 2022 - Paper 1

Question icon

Question 3

3.1-Simplify-the-following-WITHOUT-using-a-calculator:--3.1.1--$\frac{3^3-\times-3^{-2}}{9^1}$--3.1.2--$\frac{\sqrt{5+4}-\sqrt{-45}}$--3.1.3--$log_3-8-+-log_{10}-25$--3.2-Solve-for-$x$:-$log_4-(x-6)-=-log_25$--3.3-In-the-RLC-circuit,-the-impedance-of-the-two-impedances-connected-in-series-are:--$Z_1-=-4/2-\text{cis}-225^\circ$-and-$Z_2-=-3---4i$--3.3.1-Express-$Z_1$-in-rectangular-form-NSC Technical Mathematics-Question 3-2022-Paper 1.png

3.1 Simplify the following WITHOUT using a calculator: 3.1.1 $\frac{3^3 \times 3^{-2}}{9^1}$ 3.1.2 $\frac{\sqrt{5+4}-\sqrt{-45}}$ 3.1.3 $log_3 8 + log_{10} 25$... show full transcript

Worked Solution & Example Answer:3.1 Simplify the following WITHOUT using a calculator: 3.1.1 $\frac{3^3 \times 3^{-2}}{9^1}$ 3.1.2 $\frac{\sqrt{5+4}-\sqrt{-45}}$ 3.1.3 $log_3 8 + log_{10} 25$ 3.2 Solve for $x$: $log_4 (x-6) = log_25$ 3.3 In the RLC circuit, the impedance of the two impedances connected in series are: $Z_1 = 4/2 \text{cis} 225^\circ$ and $Z_2 = 3 - 4i$ 3.3.1 Express $Z_1$ in rectangular form - NSC Technical Mathematics - Question 3 - 2022 - Paper 1

Step 1

3.1.1 $\frac{3^3 \times 3^{-2}}{9^1}$

96%

114 rated

Answer

To simplify this expression, we first recognize that 9=329 = 3^2. Thus, we can rewrite the denominator:

33×3232\frac{3^3 \times 3^{-2}}{3^2}

Next, we apply the property of exponents that states: aman=amn\frac{a^m}{a^n} = a^{m-n}:

33(2)2=332=31=33^{3-(-2)-2} = 3^{3-2} = 3^{1} = 3

Step 2

3.1.2 $\frac{\sqrt{5+4}-\sqrt{-45}}$

99%

104 rated

Answer

First, simplify the first term:

5+4=9=3\sqrt{5+4} = \sqrt{9} = 3

For the second term, since we are dealing with a negative under the square root, we can convert it to:

45=45i=35i\sqrt{-45} = \sqrt{45}i = 3\sqrt{5}i

Combining both, we have:

335i3 - 3\sqrt{5}i

Step 3

3.1.3 $log_3 8 + log_{10} 25$

96%

101 rated

Answer

Using the change of base formula, we rewrite:

log38=log28log23=3log23log_3 8 = \frac{log_2 8}{log_2 3} = \frac{3}{log_2 3}

For the second term:

log1025=log10(52)=2log105log_{10} 25 = log_{10} (5^2) = 2 \cdot log_{10} 5

Thus, our final expression combining both logs becomes:

3log23+2log105\frac{3}{log_2 3} + 2 \cdot log_{10} 5

Step 4

3.2 Solve for $x$: $log_4 (x-6) = log_2 5$

98%

120 rated

Answer

Firstly, convert the logarithm of base 4 to base 2:

log4(x6)=log2(x6)log24=log2(x6)2log_4 (x-6) = \frac{log_2 (x-6)}{log_2 4} = \frac{log_2 (x-6)}{2}

Setting this equal to log225log_2 25 gives:

log2(x6)2=log225\frac{log_2 (x-6)}{2} = log_2 25

Multiplying everything by 2:

log2(x6)=2log225log_2 (x-6) = 2 \cdot log_2 25

Now, simplify:

x6=252=625x=625+6=631x-6 = 25^2 = 625 \Rightarrow x = 625 + 6 = 631

Step 5

3.3.1 Express $Z_1$ in rectangular form.

97%

117 rated

Answer

To express Z1=4/2cis225Z_1 = 4/2 \text{cis} 225^\circ, we need to convert to rectangular form:

Z1=42(cos(225)+isin(225))=2(2222i)=22iZ_1 = \frac{4}{2} (cos(225^\circ) + i sin(225^\circ)) = 2(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i) = -\sqrt{2} - \sqrt{2}i

Step 6

3.3.2 Hence, determine $(Z_1 + Z_2)$, the total impedance of the circuit.

97%

121 rated

Answer

Now, adding Z1Z_1 and Z2Z_2:

Z2=34iZ_2 = 3 - 4i

Thus:

Z1+Z2=(22i)+(34i)Z_1 + Z_2 = (-\sqrt{2} - \sqrt{2}i) + (3 - 4i)

Combine real and imaginary parts:

=(32)+(42)i= (3 - \sqrt{2}) + (-4 - \sqrt{2})i

The total impedance becomes:

Z=(32)+(42)iZ = (3 - \sqrt{2}) + (-4 - \sqrt{2})i

Step 7

3.4 Determine (showing ALL working) the numerical values of $p$ and $q$ if: $-p + qi = 4i^{-2} -(2 + 3i)$

96%

114 rated

Answer

First, simplify 4i24i^{-2}:

4i2=4(1)=44i^{-2} = 4\cdot(-1) = -4

Now, substituting:

p+qi=4(2+3i)-p + qi = -4 -(2 + 3i)

Combine terms:

p+qi=63i-p + qi = -6 - 3i

By matching real and imaginary parts:

p=6p=6-p = -6 \Rightarrow p = 6 q=3q = -3

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;