Los op vir x:
1.1.1
\(rac{1}{2}(2x - 1) = 0\)
1.1.2
\(-x(6 - x) = 4\) (rond af tot TWEE desimale plekke)
1.1.3
\(\{2 - x\} (x + 5) > 0\)
Gegee:
\(y + x - 10 = 0\)
en
\(x^2 - xy + y^2 = 28\)
1.2.1
Druk \(y + x - 10 = 0\)
in die vorm \(y = mx + c\) uit - NSC Technical Mathematics - Question 1 - 2023 - Paper 1
Question 1
Los op vir x:
1.1.1
\(rac{1}{2}(2x - 1) = 0\)
1.1.2
\(-x(6 - x) = 4\) (rond af tot TWEE desimale plekke)
1.1.3
\(\{2 - x\} (x + 5) > 0\)
Gegee:
\(y + x - ... show full transcript
Worked Solution & Example Answer:Los op vir x:
1.1.1
\(rac{1}{2}(2x - 1) = 0\)
1.1.2
\(-x(6 - x) = 4\) (rond af tot TWEE desimale plekke)
1.1.3
\(\{2 - x\} (x + 5) > 0\)
Gegee:
\(y + x - 10 = 0\)
en
\(x^2 - xy + y^2 = 28\)
1.2.1
Druk \(y + x - 10 = 0\)
in die vorm \(y = mx + c\) uit - NSC Technical Mathematics - Question 1 - 2023 - Paper 1
Step 1
1.1.1
\(\frac{1}{2}(2x - 1) = 0\)
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Om (x) op te los, vermenigvuldig met 2:
(2(\frac{1}{2}(2x - 1)) = 2(0) )
Hierdeur kry ons:
(2x - 1 = 0)
Daarna, voeg 1 by beide kante:
(2x = 1)
Deel nou met 2:
(x = \frac{1}{2})
Step 2
1.1.2
\(-x(6 - x) = 4\)
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Herorganiseer die vergelyking:
(x(6 - x) = -4)
(6x - x^2 = -4)
(x^2 - 6x - 4 = 0)
Gebruik die kwadratiese formule, waar (a = 1, b = -6, c = -4):
(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a})
Bereken:
(x = \frac{6 \pm \sqrt{36 + 16}}{2})
(x = \frac{6 \pm \sqrt{52}}{2})
(x = \frac{6 \pm 2\sqrt{13}}{2})
(x = 3 \pm \sqrt{13})
(\approx 0.39) en (x \approx 6.61)
Step 3
1.1.3
\(\{2 - x\} (x + 5) > 0\)
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Bepaal die kritieke punte:
(2 - x = 0 \Rightarrow x = 2)
(x + 5 = 0 \Rightarrow x = -5)
Oorweeg die intervalls:
((-\infty, -5), (-5, 2), (2, \infty))
Toets waardes in elke interval:
vir (x < -5): positief
vir (-5 < x < 2): negatief
vir (x > 2): positief
Die oplossing is:
(x \in (-\infty, -5) \cup (2, \infty))
Step 4
1.2.1
\(y + x - 10 = 0\)
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Om (y) uit te druk, is die volgende stappe nodig:
Herorganiseer die vergelyking:
(y = 10 - x)
Dit is nou in die vorm (y = mx + c) waar (m = -1) en (c = 10).
Step 5
1.2.2
Los vervolgens, of andersins, geef vir x en y.
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Gebruik (y + x - 10 = 0) en substitueer die waarde van (x) wat u gekry het:
As (x = \frac{1}{2}):
(y = 10 - \frac{1}{2} = \frac{19}{2})
Of indien (x = 3 + \sqrt{13}), dan:
(y = 10 - (3 + \sqrt{13}) = 7 - \sqrt{13})
En as (x = 3 - \sqrt{13}), dan:
(y = 10 - (3 - \sqrt{13}) = 7 + \sqrt{13}).
Step 6
1.3.1
Maak \(A\) die onderwerp van die formule.
97%
121 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
(P = \frac{F}{A})
Deur dit te herorganiseer kry ons:
(A = \frac{F}{P})
Step 7
1.3.2
Vervolgens, of andersins, bepaal die waarde van \(A\) indien \(P = 25 984 480,5 Pa\) en \(F = 25 \times 10^3 N\).
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Plaas die waardes in die formule:
(A = \frac{25 \times 10^3}{25 984 480,5})
Na berekening:
(A \approx 0.000962\ m^2)
In wetenskaplike notasie, dit is:
(\approx 9.62 \times 10^{-4}\ m^2)
Step 8
1.4.1
Bepaal die waarde van \(A - B\) in dekadiese vorm.
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Reken die waardes van (A) en (B):
(A = 100111_2 = 35_{10})
(B = 10011_2 = 19_{10})
Dan is:
(A - B = 35 - 19 = 16_{10})
Step 9
1.4.2
Bereken biedt die antwoord op VRAAG 1.4.
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Dit is eenvoudig die antwoord van 1.4.1, wat (16) is.