1.1 Los op vir $x$:
1.1.1 $2x(x + 3) = 0$
1.1.2 $x + 9 = 12$ (korrekt tot TWEE desimale plakke)
1.1.3 $x(6 - x) ext{ ge } 0$ en stel dan die oplossing op $n$ getallelig voor
1.2 Los op vir $x$ en $y$ indien:
$x = 1 - 2y$ en $3x^2 = 3 + x + y$
1.3 Die diagram hieronder toon ʼn eenvoudige pendulum wat van punt A na punt C swaai - NSC Technical Mathematics - Question 1 - 2021 - Paper 1
Question 1
1.1 Los op vir $x$:
1.1.1 $2x(x + 3) = 0$
1.1.2 $x + 9 = 12$ (korrekt tot TWEE desimale plakke)
1.1.3 $x(6 - x) ext{ ge } 0$ en stel dan die oplossing op $n$... show full transcript
Worked Solution & Example Answer:1.1 Los op vir $x$:
1.1.1 $2x(x + 3) = 0$
1.1.2 $x + 9 = 12$ (korrekt tot TWEE desimale plakke)
1.1.3 $x(6 - x) ext{ ge } 0$ en stel dan die oplossing op $n$ getallelig voor
1.2 Los op vir $x$ en $y$ indien:
$x = 1 - 2y$ en $3x^2 = 3 + x + y$
1.3 Die diagram hieronder toon ʼn eenvoudige pendulum wat van punt A na punt C swaai - NSC Technical Mathematics - Question 1 - 2021 - Paper 1
Step 1
1.1.1 $2x(x + 3) = 0$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Om die vergelyking op te los, stel ons elk van die faktore gelyk aan nul:
2x=0
Dit gee x=0.
x+3=0
Dit gee x=−3.
So, die oplosings is x=0 of x=−3.
Step 2
1.1.2 $x + 9 = 12$ (korrekt tot TWEE desimale plakke)
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Oplossing:
x+9=12 x=12−9 x=3
Die antwoord is 3.
Step 3
1.1.3 $x(6 - x) ext{ ge } 0$ en stel dan die oplossing op $n$ getallelig voor
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Hierdie vergelyking kan herskryf word as:
x(6−x)extge0
Hier kan ons die kritieke waardes vind: x=0 of x=6.
Die oplossing is:
0ext≤xext≤6.
Step 4
1.2 Los op vir $x$ en $y$ indien: $x = 1 - 2y$ en $3x^2 = 3 + x + y$
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Begin met x=1−2y.
Substitueer in die tweede vergelyking:
egin{align*}
3(1 - 2y)^2 &= 3 + (1 - 2y) + y \
3(1 - 4y + 4y^2) &= 3 + 1 - 2y + y \
3 - 12y + 12y^2 &= 4 - y \
12y^2 - 11y - 1 &= 0\
ext{Gebruik die kwadratiese formule:}\
y = rac{-b ext{ ± } ext{√}(b^2 - 4ac)}{2a} = rac{-(-11) ext{ ± } ext{√}(121 + 48)}{24} = rac{11 ext{ ± } ext{√}(169)}{12} = rac{11 ext{ ± } 13}{12}
ext{Dus: } ext{die antwoord is } y = 2 ext{ of } y = -rac{1}{6}.
ext{Nou, substitueer y terug om x te kry.}
ext{As } y=2: x = 1 - 2(2) = -3. ext{ As } y=-rac{1}{6}: x = 1 - 2(-rac{1}{6}) = rac{4}{3}.
ext{ Oplossingspar: } (-3, 2) ext{ en } (rac{4}{3}, -rac{1}{6}).
Step 5
1.3.1 Maak $L$ die onderwerp van die formule.
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Begin met die formule:
T = 2ar{ ext{π}}igg(rac{L}{g}igg)^{rac{1}{2}}
Kwadreer beide kante:
T^2 = 4ar{ ext{π}}^2 rac{L}{g}.
Los op vir L:
L = rac{g T^2}{4ar{ ext{π}}^2}
Step 6
1.3.2 Bereken vervolgens die numeriese waarde van $L$ as $g = 9,8$ m/s² en die tyd geneem $T = 1,74$ s.
97%
121 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Vervang die waardes in die formule:
L = rac{9.8 imes (1.74)^2}{4 ar{ ext{π}}^2}
Bereken die waarde:
Lextapproximatelyequals0.75extm
Step 7
1.4 Gegee die binêre getalle: A: $1101100_2$ en B: $11100_2$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Evalueer A – B:
egin{align*}
A: & ext{ } 1101100_2 = 100 \
B: & ext{ } 11100_2 = 28 \
ext{Dus,} \
A - B = 100 - 28 = 72_{10} \ ext{Gegee in binêre vorm: } 1001000_2.
ext{Daarom is die antwoord } 1001000_2.
ext{ }
ext{Dus die finale antwoord is } 1001000_2.